"Narrowing the linewidth of a distributed Bragg reflector laser with an intracavity electro-optic modulator" was recorded at Photonics West 2020 in San Francisco, California.
State of the art atomic sensors operate near the standard quantum limit (SQL) of projection noise, and overcoming this limit by using atom-atom entanglement such as spin squeezing is a major goal in quantum metrology. By coupling an ensemble of approximately 1000 Yb-171 atoms to a high-finesse asymmetric micromirror cavity with single-atom cooperativity of 1.8., we produce a near-unitary spin squeezed state. The observed spin noise suppression and metrological gain are limited by the state readout to 9.4(4) dB and 6.5(4) dB, respectively, while the generated states offer a spin noise suppression of 15.9(6) dB and a metrological gain of 12.9(6) dB over the standard quantum limit, limited by the curvature of the Bloch sphere. When requiring the squeezing process to be within 30% of unitarity, we demonstrate an interferometer that improves the averaging time over the SQL by a factor of 3.7(2).
The orbital angular momentum (OAM) of photons is a promising degree of freedom for high-dimensional quantum key distribution (QKD). Due to the greater flexibility in applications and the lower loss, QAM QKD over the free-space channel is still significant. However, effectively mitigating the adverse effects of atmospheric turbulence is a persistent challenge. In contrast to previous works focusing on correcting static simulated turbulence, we investigate the performance of OAM QKD in real atmospheric turbulence with real-time adaptive optics (AO) correction. We show that, it is possible to mitigate the errors induced by weak turbulence and establish a secure channel under some conditions. The cross-talk induced by turbulence and the performance of AO systems are investigated in a lab-scale link with controllable turbulence. The relations between the crosstalk and AO specifications is also studied. Our experimental results suggest that an advanced AO system with fine beam tracking, reliable beam stabilization, precise wavefront sensing and accurate wavefront correction is necessary to adequately correct turbulence-induced error.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.