Deep learning boosts the performance of automatic OCT segmentation, which is a prerequisite for standardized diagnostic and therapeutic procedures. However, training deep neural network requires laborious data labeling, and the trained models only work well on data from the same manufacturer, imaging protocol, and region of interest. Here we propose a novel learning method to reduce labeling costs. By labeling and training on a single image, we achieved segmentation accuracy comparable to that of a U-Net model trained on ~25 to 50 labeled images. This reduction in labeling costs could significantly improve the flexibility and generalization of deep-learning-based OCT segmentation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.