Rare earth iron garnets (REIG’s) are important component materials in magnetic insulator based spintronics due to their low spin wave damping and electrically insulating properties. Yttrium iron garnet (YIG) has been the mainstay material because of its unusually low spin damping. However, YIG thin films thus far have in-plane magnetization. Recent studies on thulium iron garnet (TIG) thin films have demonstrated robust perpendicular magnetic anisotropy (PMA), however, spin damping in TIG films is significantly higher compared to YIG. It would be useful to have an insulating magnetic material that exhibits both low spin damping and robust, tunable PMA because of its potential for novel device configurations. In this study, we synthesized YIG-TIG solid solution powders across the compositional phase diagram and with different particle sizes using the polymeric steric entrapment technique in order to begin to decouple compositional effects from size and morphological effects. Powder characterization, including XRD, VSM, SEM and FMR techniques, was also performed to understand their magnetic behavior.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.