In cancer research, regions of increasingly lowered oxygenation in tissue (hypoxia), which are due to tumor development, are considered to play an important role in activating various signaling pathways that facilitate further development of the cancer. However, devising a minimally invasive method to monitor tissue oxygenation has remained a challenge. Photoacoustic microscopy has been posed as a solution in a variety of preclinical research studies. Here, using optical-resolution photoacoustic microscopy (OR-PAM), for the first time, we non-invasively measured oxygenation and vascularization in vivo caused by multiple myeloma (MM) progression. Mice injected with MM cells tagged with green fluorescent protein were monitored with a fluorescence microscope for tumor progression over the course of 28 days. OR-PAM evaluated the oxygen saturation (sO2) and the blood vessel density in the cerebral bone marrow, where MM cells home. At 28 days after the injection of MM cells, the total sO2 had dropped by 50% in the developing tumor regions, while in the non-tumor developing regions it had dropped by 20% compared with the value at one day after MM injection. The blood vessel density had dropped by 35% in the tumor developing regions, while in the non-tumor developing regions it had dropped by 8% compared with the value at one day after MM injection. In summary, non-invasive measurement by OR-PAM correlated the development of hypoxia with to MM progression. It revealed decreased vascularization surrounding the tumor areas, which we feel can be ascribed to the rapid tumor progression.
We report photoacoustic microscopy (PAM) of arteriovenous (AV) shunts in early stage tumors in vivo, and develop a pattern recognition framework for computerized tumor detection. Here, using a high-resolution photoacoustic microscope, we implement a new blood oxygenation (sO2)-based disease marker induced by the AV shunt effect in tumor angiogenesis. We discovered a striking biological phenomenon: There can be two dramatically different sO2 values in bloodstreams flowing side-by-side in a single vessel. By tracing abnormal sO2 values in the blood vessels, we can identify a tumor region at an early stage. To further automate tumor detection based on our findings, we adopt widely used pattern recognition methods and develop an efficient computerized classification framework. The test result shows over 80% averaged detection accuracy with false positive contributing 18.52% of error test samples on a 50 PAM image dataset.
We have enhanced photoacoustic computed tomography with dry acoustic coupling that eliminates water immersion anxiety and wrinkling of the animal and facilitates incorporating complementary modalities and procedures. The dry acoustic coupler is made of a tubular elastic membrane enclosed by a closed transparent water tank. The tubular membrane ensures water-free contact with the animal, and the closed water tank allows pressurization for animal stabilization. The dry coupler was tested using a whole-body small-animal ring-shaped photoacoustic computed tomography system. Dry coupling was found to provide image quality comparable to that of conventional water coupling.
Angiogenesis in a tumor region creates arteriovenous (AV) shunts that cause an abnormal venous blood oxygen saturation (sO2) distribution. Here, we applied optical-resolution photoacoustic microscopy to study the AV shunting in vivo. First, we built a phantom to image sO2 distribution in a vessel containing converged flows from two upstream blood vessels with different sO2 values. The phantom experiment showed that the blood from the two upstream vessels maintained a clear sO2 boundary for hundreds of seconds, which is consistent with our theoretical analysis using a diffusion model. Next, we xenotransplanted O-786 tumor cells in mouse ears and observed abnormal sO2 distribution in the downstream vein from the AV shunts in vivo. Finally, we identified the tumor location by tracing the sO2 distribution. Our study suggests that abnormal sO2 distribution induced by the AV shunts in the vessel network may be used as a new functional benchmark for early tumor detection.
Intravital microscopy techniques have become increasingly important in biomedical research because they can provide unique microscopic views of various biological or disease developmental processes in situ. Here we present an optical-resolution photoacoustic endomicroscopy (OR-PAEM) system that visualizes internal organs with a much finer resolution than conventional acoustic-resolution photoacoustic endoscopy systems. By combining gradient index (GRIN) lens-based optical focusing and ultrasonic ring transducer-based acoustic focusing, we achieved a transverse resolution as fine as ~10 μm at an optical working distance of 6.5 mm. The OR-PAEM system’s high-resolution intravital imaging capability is demonstrated through animal experiments.
We propose using noninvasive longitudinal optical-resolution photoacoustic microscopy (L-ORPAM) to quantify blood flow flux, oxygen saturation (sO2), and thereby the metabolic rate of oxygen (MRO2), for a renal tumor model in the same mouse over weeks to months. Experiments showed that the sO2 difference between the artery and vein decreased greatly due to the arteriovenous shunting effect during tumor growth. Moreover, hypermetabolism was exhibited by an increase in MRO2.
KEYWORDS: Signal to noise ratio, Raster graphics, Photoacoustic microscopy, Tumors, In vivo imaging, Tissue optics, Natural surfaces, Image acquisition, Ear, 3D acquisition
Accurate quantification of microvasculature remains of interest in fundamental pathophysiological studies and clinical trials. Current photoacoustic microscopy can noninvasively quantify properties of the microvasculature, including vessel density and diameter, with a high spatial resolution. However, the depth range of focus (i.e., focal zone) of optical-resolution photoacoustic microscopy (OR-PAM) is often insufficient to encompass the depth variations of features of interest—such as blood vessels—due to uneven tissue surfaces. Thus, time-consuming image acquisitions at multiple different focal planes are required to maintain the region of interest in the focal zone. We have developed continuous three-dimensional motorized contour-scanning OR-PAM, which enables real-time adjustment of the focal plane to track the vessels’ profile. We have experimentally demonstrated that contour scanning improves the signal-to-noise ratio of conventional OR-PAM by as much as 41% and shortens the image acquisition time by 3.2 times. Moreover, contour-scanning OR-PAM more accurately quantifies vessel density and diameter, and has been applied to studying tumors with uneven surfaces.
KEYWORDS: In vivo imaging, Tumors, Ear, Photoacoustic microscopy, Acoustics, Biomedical optics, Optical scanning, 3D image processing, 3D scanning, Transducers
Combined optical and mechanical scanning (COMS) in optical-resolution photoacoustic microscopy (OR-PAM) has provided five scanning modes with fast imaging speed and wide field of view (FOV). With two-dimensional (2D) galvanometer-based optical scanning, we have achieved a 2 KHz B-scan rate and 50 Hz volumetric-scan rate, which enables real-time tracking of cell activities in vivo. With optical-mechanical hybrid 2D scanning, we are able to image a wide FOV (10×8 mm2) within 150 seconds, which is 20 times faster than the conventional mechanical scan in our second-generation OR-PAM. With three-dimensional mechanical-based contour scanning, we can maintain the optimal signal-to-noise ratio and spatial resolution of OR-PAM while imaging objects with uneven surfaces, which is ideal for fast and quantitative studies of tumors and the brain.
KEYWORDS: Raster graphics, Photoacoustic microscopy, Signal to noise ratio, Oxygen, 3D scanning, 3D photoacoustic microscopy, Blood circulation, In vivo imaging, Arteries, 3D image processing
We have developed three-dimensional arbitrary trajectory (3-DAT) scanning, which can rapidly image vessels of interest over a large field of view (FOV) and maintain a high signal-to-noise ratio (SNR) along the depth direction. The concept of 3-DAT scanning was demonstrated by imaging a human hair within a FOV of 3.5 × 2.0 mm2. Further, we showed that hemoglobin oxygen saturation (sO2) and blood flow can be measured simultaneously. The frame rate was 67 times faster than a traditional two-dimensional raster scan. We also observed sO2 dynamics in response to a switch between systemic hyperoxia and hypoxia.
Blood pulse wave velocity (PWV) is an important indicator for vascular stiffness. In this letter, we present
electrocardiogram-synchronized photoacoustic microscopy for in vivo noninvasive quantification of the PWV in the
peripheral vessels of mice. Interestingly, strong correlation between blood flow speed and ECG were clearly
observed in arteries but not in veins. PWV is measured by the pulse travel time and the distance between two spot of
a chose vessel, where simultaneously recorded electrocardiograms served as references. Statistical analysis shows a
linear correlation between the PWV and the vessel diameter, which agrees with known physiology.
Keywords: photoacoustic microscopy, photoacoustic spectroscopy, bilirubin, scattering medium.
Blood pulse wave velocity (PWV) is an important physiological parameter that characterizes vascular stiffness. In this letter, we present electrocardiogram-synchronized, photoacoustic microscopy for noninvasive quantification of the PWV in the peripheral vessels of living mice. Interestingly, blood pulse wave-induced fluctuations in blood flow speed were clearly observed in arteries and arterioles, but not in veins or venules. Simultaneously recorded electrocardiograms served as references to measure the travel time of the pulse wave between two cross sections of a chosen vessel and vessel segmentation analysis enabled accurate quantification of the travel distance. PWVs were quantified in ten vessel segments from two mice. Statistical analysis shows a linear correlation between the PWV and the vessel diameter which agrees with known physiology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.