We investigated the impact of laser coherence length on reconstructed flow contrast images with our innovative speckle contrast diffuse correlation tomography (scDCT) device. We tested three lasers with varied coherence lengths: >10 meters, ~3.3 millimeters, and ~390 micrometers. Lasers with coherence lengths larger than millimeters yielded good-quality flow images with higher signal-to-noise ratios (SNR) and less image distortion. We concluded that scDCT measurements do not require excessively long coherence lasers with high costs.
We developed and evaluated a low-cost, miniaturized, and user-friendly speckle contrast diffuse correlation tomography (scDCT) device for noncontact, fast, high-density, and depth-sensitive imaging of CBF distribution in the brain. The new low-cost portable scDCT device was evaluated against an established large scDCT system using head-simulating phantoms with known optical properties and the mouse with transient ligations of common carotid arteries. Results taken from the two scDCT systems were highly consistent. The low-cost miniaturized scDCT has the potential to be commercialized as an affordable, portable, and ergonomic brain monitoring tool for neuroscience research in numerous academic and industrial laboratories.
KEYWORDS: Brain, Ischemia, Simulation of CCA and DLA aggregates, Windows, Speckle, 3D image reconstruction, Sampling rates, Tissues, Reconstruction algorithms, Neuroimaging
SignificanceLow-frequency oscillations (LFOs) (<0.1 Hz) with respect to cerebral blood flow (CBF) have shown promise as an indicator of altered neurologic activity in the abnormal brain. Portable optical instruments have evolved to offer a noninvasive alternative for continuous CBF monitoring at the bedside compared with many large neuroimaging modalities. However, their utilization for acquiring LFOs of CBF has only been studied to a limited extent.AimWe aim to optimize an innovative speckle contrast diffuse correlation tomography (scDCT) system for the detection of LFOs within CBF variations.ApproachThe scDCT was optimized to achieve a higher sampling rate and a faster image reconstruction using a moving window 3D reconstruction algorithm with parallel computation. Power spectral density (PSD) analysis was performed to investigate altered LFOs during transient global cerebral ischemia in neonatal piglets.ResultsTransient global cerebral ischemia resulted in reductions in both CBF and PSD compared with their baseline values.ConclusionsSpontaneous LFOs, combined with CBF, provide a more comprehensive assay with the potential to clarify pathological mechanisms involved in brain injury. These results support scDCT’s inclusion and application in the growing area of LFO analysis and demonstrate its inherent advantage for neurological studies in preclinical and clinical settings, such as neonatal intensive care units.
An innovative camera-based speckle contrast diffuse correlation tomography (scDCT) technology has been developed recently, which enables noncontact, noninvasive, high-density, 3D imaging of cerebral blood flow (CBF) distributions. This study demonstrated the capability and safety of scDCT technique for imaging of CBF distributions in a neonatal piglet model of transient ischemic stroke. Moreover, power spectral density analyses of low-frequency oscillations (LFOs) and the network connections over the brain were assessed before and after the induction of acute ischemic stroke. The stroke resulted in a substantial decrease in CBF, attenuations in resting-state LFOs, and functional connectivity disruptions in motor and somatosensory cortices.
Laser speckle contrast imaging (LSCI) illuminates continuous-wave (CW) laser light on tissue surface. We assembled an integrated LSCI system combining a CW laser at 785 nm and a picosecond pulsed laser at 775 nm. A CMOS camera collected images from mouse head with intact skull. The pulsed laser with engineered diffuser captured more details of brain vessels compared to the CW laser with glass diffusers. The consecutive ligations of left and right common carotid arteries resulted in significant CBF reductions. This research lays the ground to develop multimodal imaging systems integrating LSCI and other imaging techniques with shared pulse illuminations.
KEYWORDS: Ischemia, Optical sensors, Simulation of CCA and DLA aggregates, Semiconductor lasers, Detector arrays, Spectroscopy, Speckle, Neuroscience, Laser tissue interaction, Head
We report an innovative, wearable, multiscale diffuse speckle contrast flowmetry (DSCF) probe for continuous transcranial imaging of cerebral blood flow (CBF) in animal s. Significant reductions in CBF during transient ligation of bilateral common carotid arteries were detected by DSCF (-35±13% in two mice and -59% in a piglet), meeting clinical expectations. Results from DSCF and an established CBF measurement device, diffuse correlation spectroscopy, were consistent and significantly correlated. With further optimization and validation in animals and humans, we expect to ultimately offer a unique, noninvasive, low-cost, and fast brain imaging tool for basic neuroscience research and clinical applications.
Intraventricular hemorrhage (IVH) is the most common neurological complication of prematurity. IVH is a bleeding inside or around ventricles, spaces in the brain containing the cerebrospinal fluid, which occurs as a result of the fragility and immaturity of blood vessels in premature brains. Severe IVH disrupts development of structural and functional connectivity networks, leading to impairments of cerebral development and neurologic deficits. Preterm infants with IVH are prone to alterations in cerebral blood flow (CBF) and associated spontaneous low-frequency fluctuations. However, there are no established noninvasive imaging methods for continuous monitoring of CBF alterations at the bedside in neonatal intensive care units. An innovative CCD/CMOS based speckle contrast diffuse correlation tomography (scDCT) technology has been recently developed in our laboratory, which enables noncontact, noninvasive, and high-density 3D imaging of CBF distributions in deep brain cortex. In the present study, the capability of scDCT technique for noncontact 3D imaging of CBF distributions in a neonatal piglet model of IVH was demonstrated. Moreover, power spectral density analyses of scDCT data were performed to assess alterations in spontaneous low frequency fluctuations in the resting brain, before and after inducing IVH. IVH resulted in a CBF decrease in deep brain cortex. Resting-state spontaneous low-frequency fluctuations after IVH showed attenuations in all frequencies (0.009– 0.08 Hz) compared to the baseline before IVH. In conclusion, scDCT is capable of detecting brain hemodynamic disruptions (reduction in CBF and attenuation in spontaneous low-frequency fluctuations) after IVH, which might be useful for instant management of IVH and associated complications.
We present an innovative, wearable, fiber-free, near-infrared diffuse speckle contrast flowmetry (DSCF) probe that is fixed on the skull for continuous monitoring of cerebral blood flow (CBF) variations in mice during anesthesia, awake, and freely behaving. Results show a small surge when the animal waked up, a mild decrease after the isoflurane washed off, a 37 ± 9% increase during 10%CO2 inhalation (n = 3), and mild elevations during grooming and walking. These CBF variations are consistent with clinical observations when recovery from anesthesia and impacts by isoflurane, hypercapnia (CO2), and activity-induced cortical excitations.
Significance: There is an essential need to develop wearable multimodality technologies that can continuously measure both blood flow and oxygenation in deep tissues to investigate and manage various vascular/cellular diseases.
Aim: To develop a wearable dual-wavelength diffuse speckle contrast flow oximetry (DSCFO) for simultaneous measurements of blood flow and oxygenation variations in deep tissues.
Approach: A wearable fiber-free DSCFO probe was fabricated using 3D printing to confine two small near-infrared laser diodes and a tiny CMOS camera in positions for DSCFO measurements. The spatial diffuse speckle contrast and light intensity measurements at the two different wavelengths enable quantification of tissue blood flow and oxygenation, respectively. The DSCFO was first calibrated using tissue phantoms and then tested in adult forearms during artery cuff occlusion.
Results: Phantom tests determined the largest effective source–detector distance (15 mm) and optimal camera exposure time (10 ms) and verified the accuracy of DSCFO in measuring absorption coefficient variations. The DSCFO detected substantial changes in forearm blood flow and oxygenation resulting from the artery occlusion, which meet physiological expectations and are consistent with previous study results.
Conclusions: The wearable DSCFO may be used for continuous and simultaneous monitoring of blood flow and oxygenation variations in freely behaving subjects.
A noncontact electron multiplying charge-coupled-device (EMCCD)-based speckle contrast diffuse correlation tomography (scDCT) technology has been recently developed in our laboratory, allowing for noninvasive three-dimensional measurement of tissue blood flow distributions. One major remaining constraint in the scDCT is the assumption of a semi-infinite tissue volume with a flat surface, which affects the image reconstruction accuracy for tissues with irregular geometries. An advanced photometric stereo technique (PST) was integrated into the scDCT system to obtain the surface geometry in real time for image reconstruction. Computer simulations demonstrated that a priori knowledge of tissue surface geometry is crucial for precisely reconstructing the anomaly with blood flow contrast. Importantly, the innovative integration design with one single-EMCCD camera for both PST and scDCT data collection obviates the need for offline alignment of sources and detectors on the tissue boundary. The in vivo imaging capability of the updated scDCT is demonstrated by imaging dynamic changes in forearm blood flow distribution during a cuff-occlusion procedure. The feasibility and safety in clinical use are evidenced by intraoperative imaging of mastectomy skin flaps and comparison with fluorescence angiography.
This study used a hybrid near-infrared diffuse optical instrument to monitor tumor hemodynamic responses to chemoradiation therapy for early prediction of treatment outcomes in patients with head and neck cancer. Forty-seven patients were measured once per week to evaluate the hemodynamic status of clinically involved cervical lymph nodes as surrogates for the primary tumor response. Patients were classified into two groups: complete response (CR) (n=29) and incomplete response (IR) (n=18). Tumor hemodynamic responses were found to be associated with clinical outcomes (CR/IR), wherein the associations differed depending on human papillomavirus (HPV-16) status. In HPV-16 positive patients, significantly lower levels in tumor oxygenated hemoglobin concentration ([HbO2]) at weeks 1 to 3, total hemoglobin concentration at week 3, and blood oxygen saturation (StO2) at week 3 were found in the IR group. In HPV-16 negative patients, significantly higher levels in tumor blood flow index and reduced scattering coefficient (μs′) at week 3 were observed in the IR group. These hemodynamic parameters exhibited significantly high accuracy for early prediction of clinical outcomes, within the first three weeks of therapy, with the areas under the receiver operating characteristic curves (AUCs) ranging from 0.83 to 0.96.
We report a low-cost compact diffuse speckle contrast flowmeter (DSCF) consisting of a small laser diode and a bare charge-coupled-device (CCD) chip, which can be used for contact measurements of blood flow variations in relatively deep tissues (up to ∼8 mm). Measurements of large flow variations by the contact DSCF probe are compared to a noncontact CCD-based diffuse speckle contrast spectroscopy and a standard contact diffuse correlation spectroscopy in tissue phantoms and a human forearm. Bland–Altman analysis shows no significant bias with good limits of agreement among these measurements: 96.5%±2.2% (94.4% to 100.0%) in phantom experiments and 92.8% in the forearm test. The relatively lower limit of agreement observed in the in vivo measurements (92.8%) is likely due to heterogeneous reactive responses of blood flow in different regions/volumes of the forearm tissues measured by different probes. The low-cost compact DSCF device holds great potential to be broadly used for continuous and longitudinal monitoring of blood flow alterations in ischemic/hypoxic tissues, which are usually associated with various vascular diseases.
Head and neck cancer accounts for 3 to 5% of all cancers in the United States. Primary or salvage surgeries are extensive and often lead to major head and neck defects that require complex reconstructions with local, regional, or free tissue transfer flaps. Knowledge of tissue blood flow (BF) changes after free tissue transfer may enable surgeons to predict the failure of flap thrombosis at an early stage. This study used our recently developed noncontact diffuse correlation spectroscopy to monitor dynamic BF changes in free flaps without getting in contact with the targeted tissue. Eight free flaps were elevated in patients with head and neck cancer; one of the flaps failed. Multiple BF measurements probing the transferred tissue were performed during and post the surgical operation. Postoperative BF values were normalized to the intraoperative baselines (assigning '1') for the calculation of relative BF change (rBF). The rBF changes over the seven successful flaps were 1.89 ± 0.15, 2.26 ± 0.13, and 2.43 ± 0.13 (mean ± standard error) respectively on postoperative days 2, 4, and 7. These postoperative values were significantly higher than the intraoperative baseline values (p < 0.001), indicating a gradual recovery of flap vascularity after the tissue transfer. By contrast, rBF changes observed from the unsuccessful flap were 1.14 and 1.34 respectively on postoperative days 2 and 4, indicating a less flow recovery. Measurement of BF recovery after flap anastomosis holds the potential to act early to salvage ischemic flaps.
Our first step to adapt our recently developed noncontact diffuse correlation tomography (ncDCT) system for three-dimensional (3-D) imaging of blood flow distribution in human breast tumors is reported. A commercial 3-D camera was used to obtain breast surface geometry, which was then converted to a solid volume mesh. An ncDCT probe scanned over a region of interest on the mesh surface and the measured boundary data were combined with a finite element framework for 3-D image reconstruction of blood flow distribution. This technique was tested in computer simulations and in vivo human breasts with low-grade carcinoma. Results from computer simulations suggest that relatively high accuracy can be achieved when the entire tumor is within the sensitive region of diffuse light. Image reconstruction with a priori knowledge of the tumor volume and location can significantly improve the accuracy in recovery of tumor blood flow contrasts. In vivo imaging results from two breast carcinomas show higher average blood flow contrasts (5.9- and 10.9-fold) in the tumor regions compared to the surrounding tissues, which are comparable with previous findings using diffuse correlation spectroscopy. The ncDCT system has the potential to image blood flow distributions in soft and vulnerable tissues without distorting tissue hemodynamics.
Knowledge of tissue blood flow (BF) changes after free tissue transfer may enable surgeons to predict the failure of flap thrombosis at an early stage. This study used our recently developed noncontact diffuse correlation spectroscopy to monitor dynamic BF changes in free flaps without getting in contact with the targeted tissue. Eight free flaps were elevated in patients with head and neck cancer; one of the flaps failed. Multiple BF measurements probing the transferred tissue were performed during and post the surgical operation. Postoperative BF values were normalized to the intraoperative baselines (assigning “1”) for the calculation of relative BF change (rBF). The rBF changes over the seven successful flaps were 1.89±0.15, 2.26±0.13, and 2.43±0.13 (mean±standard error), respectively, on postoperative days 2, 4, and 7. These postoperative values were significantly higher than the intraoperative baseline values (p<0.001), indicating a gradual recovery of flap vascularity after the tissue transfer. By contrast, rBF changes observed from the unsuccessful flaps were 1.14 and 1.34, respectively, on postoperative days 2 and 4, indicating less flow recovery. Measurement of BF recovery after flap anastomosis holds the potential to act early to salvage ischemic flaps.
Technologies currently available for the monitoring of electrical stimulation (ES) in promoting blood circulation and tissue oxygenation are limited. This study integrated a muscle stimulator with a diffuse correlation spectroscopy (DCS) flow-oximeter to noninvasively quantify muscle blood flow and oxygenation responses during ES. Ten healthy subjects were tested using the integrated system. The muscle stimulator delivered biphasic electrical current to right leg quadriceps muscle, and a custom-made DCS flow-oximeter was used for simultaneous measurements of muscle blood flow and oxygenation in both legs. To minimize motion artifact of muscle fibers during ES, a novel gating algorithm was developed for data acquisition at the time when the muscle was relaxed. ES at 2, 10, and 50 Hz were applied for 20 min on each subject in three days sequentially. Results demonstrate that the 20-min ES at all frequencies promoted muscle blood flow significantly. However, only the ES at 10 Hz resulted in significant and persistent increases in oxy-hemoglobin concentration during and post ES. This pilot study supports the application of the integrated system to quantify tissue hemodynamic improvements for the optimization of ES treatment in patients suffering from diseases caused by poor blood circulation and low tissue oxygenation (e.g., pressure ulcer).
In object simulation equipment, field diaphragm is critical illuminated to obtain the maximum possible light energy.
When light source is a tiny surface source, and beam is shaped with parabolic reflect mirror to parallelism. We design the
cylindrical lens to reshape the parallel beam to elliptic image spot of 25.4mmx3mm, and imaging in the field diaphragm
of simulation system. For the volume restriction, we design a refractive system employed by one piece of meniscus lens
and two pieces of cylindrical lens. In x direction, the linear field of image is 25.4mm, and we bring in a certain amount of
sphere aberration in order to make light energy uniform distribution in the direction. Meanwhile, in y direction, the
image height accords to the requirement by controlling focus distance. Illuminance of marginal field of x direction
reaches 95% of that of centre field, which satisfies the system requirement. The configuration of this lens is rather
concise and hardly has any problem in processing.
This paper deals with the simulation for the army aviation and missile command at the thermal infrared range scale from
2.0 to 4.9μm. The infrared simulator system based on the multidimensional flight table(ISSBMFT) is the significant part
of hardware - in - the - loop (HWIL) simulation system for controlling and guiding weapon systems with infrared seekers.
It emphasizes on the infrared scene of HWIL simulation experimentation for controlling and guiding weapon and
provides a realistic environment of combat with target/jamming which owns the specific properties of radiant spectrum,
entrance angle and target's relative distance variation. Optical system is the basis of the characteristics of the simulator.
In the system, three-beam structure is put forward which will make the optical path equal. Through settling attenuators,
filters, and polaroids in the beams, which modulates the transmittance, the energy proportion is simulated, so as wave
energy and the entrance angle. So we can simulate one target and two different forms of jamming through various distance and conformations. Radiant system and controlling system is the guarantee of the simulation. Calculation of energy and the method of controlling is depicted in the article.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.