The field of optical materials has seen significant advancements in recent years due to the demand for improved optical properties. Polymers nanoparticle composites have emerged as promising candidates for optical applications due to their unique characteristics. Polymer-based materials offer advantages such as flexibility, low cost, and ease of processing, while nanoparticles possess unique optical properties. This study explores the integration of neodymium-doped sodium yttrium fluoride nanocrystals (NaYF4) into a commercial photo-polymer for two-photon polymerization (2PP) 3D printing. The resulting compound material. Characterization includes fluorescent lifetime and emission spectrum analysis, along with investigations into visible light scattering due to nanoparticle accumulations. The findings contribute to the understanding of incorporating nanoparticles into 3D printed polymers for optical applications, addressing challenges and advancing the potential for designing resonators with 3D printed gain media.
KEYWORDS: Nanostructures, Electron microscopy, Scattering, Diffraction limit, Diffraction, Optical microscopy, Near field optics, Near field, Multilayers, Modeling
Dimensional optical microscopy allows for the rapid inspection of devices at the cost of limited accuracy. Introducing a model-based approach that includes diffraction effects allows for increased accuracies. The model needs to be efficient and accurate to evaluate the measurements in an acceptable time frame.
We present an overview of the illumination model and different incidence-pupil sampling techniques. Furthermore, we will demonstrate strategies for efficiently calculating the near-field scattering response from structures using the finite element method.
Using these aspects, we demonstrate a significant increase in the accuracy of dimensional estimates for a range of structures.
In this contribution, we present a technique for the determination of optical aberrations, which is based on measurements of the point spread function and a Bayesian optimization of rigorous simulations. The measuring system is a UV-microscope in a reflected light configuration with a 200x magnification, unpolarized light, and an illumination and imaging NA of 0.44 and 0.55, respectively. The PSF is measured by imaging a small quadratic chrome dot (side length ≈ 180 nm) on a glass substrate. We investigate the impact of different adjustment states, different dot locations and different optical microscopes.
Organic Light Emitting Diodes (OLEDs) are a promising alternative to conventional anorganic semiconductor devices. Especially in terms of manufacturing, new technologies promise a variety of new opportunities. 3D printing processes are able to deposit functional materials on additive manufactured surfaces with simultaneously low material consumption. Furthermore, this may be implemented in conventional 3D printing to achieve a functional process. With this technology it is for example possible to manufacture a fully additive manufactured illumination system, based on polymer OLEDs. We use solvable functional inks for each semiconductor layer, which are ready to use in inkjet printing systems. Here we present the transfer from commonly used anorganic ITO (indium tin oxide) to an inkjet printed, transparent anode on an additive manufactured resin substrate. In addition, we discuss the 3D printing technologies involved in the manufacturing process as well as the geometrical layer design and contacting methods used. Challenges here by are the surface quality and wetting properties of the substrate surface and each individual layer. We evaluate our results by the electrical and optical characteristics. Additionally we discuss manufacturing parameters and their effect on the device functionality.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.