Aiming at the characteristics of edge gradient features and orientation features of palmprint images, a new Local Joint Edge and Orientation Patterns (LJEOP) method is proposed to extract palmprint features. Firstly, the Kirsch operator utilizes calculate the edge response values of palmprint images in 8 different orientations and the Local Maximum Edge Pattern(LMEP) is proposed to represent the edge features. The orientation features of the palmprint image are extracted by using a Gabor filter or a Modified Finite Radon Transform (MFRAT). Then the joint analysis of edge features and orientation features is carried out to construct a two-dimensional feature matrix. Compared with some existing palmprint recognition methods, our experimental results on the MSpalmprint library achieve higher recognition rate ,lower equal error rate and faster recognition speed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.