Gold nano-cavity arrays supported on polydimethylsiloxane (PDMS) have been created using colloidal lithography.
PDMS is cured on top of hexagonally close packed arrays of polystyrene spheres of diameter 820 nm resulting in a close
packed sphere imprinted polymer block. The depth of the imprints is 200 nm, indicating the whole sphere is not
entrapped in the polymer during curing. The spherical nature of the imprint can be deformed by stretching of the flexible
polymer, thus creating cuboid shaped arrays. Finally, the arrays are coated with a 100 nm gold layer, which conforms to
the polymer surface to create either spherical or cuboid shaped gold nano-cavities. Experiments show that the reflectance
properties of the arrays are critically dependent on the shape of the cavity. Spherical shaped cavity arrays display diffuse
reflectance peaks at wavelengths slightly shorter than the diameter of the templating sphere, which are absent in the
cuboid arrays. Both spherical and cuboid arrays show reflectance which is strongly dependent on the angle of incidence,
with the cuboid arrays showing differing spectra depending on the direction of the impinging light with relation to the
axis of stretching. The changes in optical behavior between the spherical and cuboid cavity arrays is discussed with
relation to the change of shape of the patterning feature at the interface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.