This work reports on development and characterization of an on-chip microfluidic handling system for application in preclinical anti-platelet drug screening. A reciprocating elastomeric micropump/mixer design is presented for use with whole human blood, utilizing flexible structural and actuation properties to manage hemodynamics for an on-chip platelet thrombosis assay on fibrillar collagen. The hemocompatibility of the design is assessed across a range of operational configurations, demonstrating equivalent or superior performance to common microcapillary systems at a range of physiologically relevant shear conditions. Surprisingly efficient mixing phenomena are briefly investigated, validated using dyes within the molecular weight range of common antiplatelet therapies. Finally, a proof-of-concept preclinical application is explored, demonstrating that this prototype can act as a real-time assay of anti-platelet drug pharmacokinetics, compared to an equivalent microcapillary system.
We report a silicon Mach-Zehnder interferometer biosensor with an integrated microfluidic sample handling for an accurate and timely detection of cardiac troponin. The performance of the photonic biosensor was evaluated in terms of sensitivity, selectivity and reproducibility following the international clinical guidelines for acute myocardial infarction with the obtention of a complete cardiac troponin point-of-care test. We demonstrated that this biosensor was able to selectively detect cardiac troponin within 10 minutes in the ng/mL-μg/mL range with high reproducibility, achieving a limit of detection as low as 3 ng/mL in a direct assay.
In this contribution, we show how the stability and ease-of-use of an integrated interferometric photonic biosensor platform can be enhanced using optical frequency combs, without any necessary changes to the sensor chip design. We show that if the comb line spacing of the optical frequency comb is adjusted to be at 120° intervals of the periodic spectral response of the used Mach-Zehnder interferometer and the transmission power values of the three comb lines are recorded over time, it is possible to extract the interferometer phase linearly and continuously for every sample point. This measurement approach provides an accurate phase measurement and is independent of the interferometer bias. Furthermore, it is robust against intensity fluctuations which are common to all three used comb lines. Our demonstration uses a simple silicon photonic interferometric refractive index sensor, and we show that the benefits of our approach can be achieved without degrading the lower limit of detection of 3.70×10-7 RIU of our sensor platform. Our technique can be applied to any interferometric sensor and only requires a single input and single output and does not need any special couplers. This technique offers a drop-in replacement to the commonly used single wavelength phase measurement.
We present recent results on the realisation and demonstration of an integrated optofluidic lab-on-a-chip measurement system. The system consists of an integrated on-chip automated microfluidic fluid handling subsystem, coupled with bimodal nano-interferometer waveguide technology, and is applied in the context of detection of antibiotics in seawater. The bimodal waveguide (BMWG) is a highly sensitive label-free biosensor. Integration of complex microfluidic systems with bimodal waveguide technology enables on-chip sample handling and fluid processing capabilities and allows for significant automation of experimental processes. The on-chip fluid-handling subsystem is realised through the integration of pneumatically actuated elastomer pumps and valves, enabling high temporal resolution sample and reagent delivery and facilitating multiplexed detection processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.