SPIE is working with SAE International to develop lidar measurement standards for active safety systems. This multi-year effort aims to develop standard tests to measure the performance of low-cost lidar sensors developed for autonomous vehicles or advanced driver assistance systems, commonly referred to as automotive lidars. SPIE is sponsoring three years of testing to support this goal. We discuss the second-year test results. In year two, we tested nine models of automotive grade lidars, using child-size targets at short ranges and larger targets at longer ranges. We also tested the effect of high reflectivity signs near the targets, laser safety, and atmospheric effects. We observed large point densities and noise dependencies for different types of automotive lidars based on their scanning patterns and fields of view. In addition to measuring point density at a given range, we have begun to evaluate the point density in the presence of measurement impediments, such as atmospheric absorption or scattering and highly reflective corner cubes. We saw dynamic range effects in which bright objects, such as road signs with corner cubes embedded in the paint, make it difficult to detect low-reflectivity targets that are close to the high-reflectivity target. Furthermore, preliminary testing showed that atmospheric extinction in a water-glycol fog chamber is comparable to natural fog conditions at ranges that are meaningful for automotive lidar, but additional characterization is required before determining general applicability. This testing also showed that laser propagation through water-glycol fog results in appreciable backscatter, which is often ignored in automotive lidar modeling. In year two, we have begun to measure the effect of impediments to measuring the 3D point cloud density; these measurements will be expanded in year three to include interference with other lidars.
Light Detection And Ranging (LiDAR) is pivotal across industries like autonomous vehicles, mapping, and defense, requiring precise 3D spatial data attainable only through active sensing. Traditional detectors, such as linear mode or Geiger mode avalanche photodiodes (APDs), have limitations. Linear mode APDs (LM-APD) provide low-light sensing but with limited gain values, particularly costly in HgCdTe. Geiger mode APDs (GMAPD) offer greater sensitivity but operate as switches with a reset time, impacting efficiency. The discrete amplification photon detector (DAPD) aims to overcome these limitations by integrating negative feedback to quench avalanching gain, providing single-photon detection with faster reset times and high gain. We present characterization results of the DAPD, including sensitivity, background noise, and reset time, crucial for LiDAR viability. This advancement not only enhances LiDAR performance but also broadens its applications.
This work summarizes the progress made on a ground-to-ground 10 Gbps free space optical link. The bi-directional link consists of two static breadboard platforms that utilize low-SWaP, commercial off-the-shelf components. Each platform features a small form-factor pluggable optical transceiver and a programmable erbium-doped fiber amplifier on transmit. The free space link spans a 500 m line-of-sight distance between two academic buildings, namely Fitz Hall and Kettering Labs at the University of Dayton. Both platforms are indoors and transceive through existing building windows. The wavelength of operation is 1550 nm and the free space optical communication (FSOC) platforms have been previously evaluated for eye-safety. In this work, the authors demonstrate mechanical beam steering based upon de-centered lens technology, round-trip bit error rate measurements, and a free space transmission control protocol network for closed-loop operation including client-server messaging, auto-reconnects, receiver optimizations, and generalized self-healing capabilities.
We present methods enabling rapid non-uniformity and range walk error correction of 3D flash LiDAR imagers that exhibit electronic crosstalk caused by simultaneously triggering too many detectors. This additional electronic crosstalk is referred to as simultaneous ranging crosstalk noise (SRCN). Using a method in which the 3D flash LiDAR imager views a checkerboard target downrange, the SRCN is largely mitigated. Additionally, processing techniques for computing the non-uniformity correction (NUC) and range walk error correction are described; these include an in-situ thermally compensated dark-frame non-uniformity correction, image processing and filtering techniques for the creation of a photo-response non-uniformity correction, and characterization and correction of the range walk error using data collected across the full focal plane array without the need for sampling or windowing. These methods result in the ability to correct noisy test validation data to a range precision of 8.04 cm and a range accuracy of 1.73 cm and to improve the signal-to-noise ratio of the intensity return by 15 to 49 dB. Visualization of a 3D scene corrected by this process is additionally presented.
This paper presents the expansion of dark-frame non-uniformity correction (DFNUC) techniques to include compensation for thermal drift in a 128×128 PIN diode 3D flash LiDAR camera. Flash LiDAR cameras are operated in various climates, which makes thermal compensation necessary in the dark NUC algorithm. The thermal excitation of electrons has a significant effect on the dark current in an InGaAs PIN photodetector and on the CMOS readout circuitry, thus impacting the output image. This is a well-known phenomenon in imaging sensors and various algorithms have been established to address thermal drift. This paper adapts a linear model for dark signal calibration used in infrared cameras for the calibration of a PIN diode flash LiDAR camera in both intensity and range return. The experimental process involves collecting dark frames in increments of the internal camera temperature from 22°C to 36°C using thermoelectric (TE) cooling modules. A linear trendline is developed for each individual pixel based on the average frame return, which suppresses the random temporal noise and isolates the dark signal return. The trendline helps form a model for the dark frame offset as a function of temperature, which is used for the dark-frame NUC process. The dark-frame NUC with thermal drift compensation is then evaluated by correcting dark frames at various operating temperatures. Finally, illuminated scenes captured by the camera with a 5.91ns, 842.4μJ pulsed laser at 5Hz are corrected at multiple operation temperatures to show the effectiveness of the dark non-uniformity correction algorithm.
We present experimental methods and results for photo-response non-uniformity correction (PRNUC) in range for a 3D flash LiDAR camera from non-optimal static-scene calibration data. Range walk is also corrected. This method breaks up the camera’s focal plane array (FPA) into 16 × 16 windowed regions of interest that are incrementally captured and stitched together in post-processing across the entire FPA. The illumination was not uniform, thus requiring additional methods described by our paper to create an acceptable correction. We present the results from a full non-uniformity correction and range walk error correction processed for a set of independently collected validation frames; these validation frames used identical experimental conditions and the same target as was collected for the corrections. We will show that this experimental approach improves range accuracy and range precision of the corrected validation frames despite the sub-optimal conditions of the data used to compute the corrections; the single shot range precision is corrected to 33 cm, as compared to a modeled precision of 15.65 cm, while the accuracy is corrected to 252 cm. This method has implications for simplification of characterization of non-uniformity and range walk error, and its subsequent correction, in 3D flash LiDAR cameras.
The latest three-dimensional imaging results from Voxtel teamed with the University are Dayton are presented using Voxtel’s VOX3D™ series flash lidar camera. This camera uses the VOX3D series flash lidar sensor which integrates a 128×128 InGaAs p-i-n detector array with a custom, multi-mode, low-noise, complementary metal-oxide semiconductor readout integrated circuit. In this paper, results are presented of: short-range (< 10 m) three-dimensional lidar imaging performed at University of Dayton with a fast, low-power eye safe laser (20-μJ per pulse, 10-kHz) in high-bandwidth, windowed region-of-interest mode; and longer range (30 – 150 m) outdoor lidar tests performed at Voxtel with two different eye safe lasers (300-μJ and 3-mJ per pulse, 10-Hz) in full-frame low-bandwidth mode. The VOX3D camera achieves a single-shot timing precision of 23.2 cm and 10.7 cm in high-bandwidth and low-bandwidth modes respectively, with the timing precision in high bandwidth mode being limited by camera electronics. The VOX3D camera has a maximum range of 51 m and 159 m with 300-μJ and 3-mJ lasers in full-frame low-bandwidth mode, respectively.
KEYWORDS: Cameras, Nonuniformity corrections, LIDAR, 3D image processing, Calibration, Time of flight range image sensors, Time of flight cameras, Direct detection LIDAR
A partial calibration technique for a 128 × 128 pin diode 3D flash LIDAR camera is presented. This paper presents dark non-uniformity correction (NUC) of a 3D flash LIDAR camera using dark frame subtraction. Dark frames are taken near threshold for intensity return to generate simultaneous trigger on a flash LIDAR camera, with trigger ramp set to zero for both range and intensity returns. Frames are cropped to a region of interest (ROI) and concatenated ideal dark intensity and dark range return into dark frames, processed into calibration files with nearest neighbor correction in dark intensity frames to correct out slowly varying, high intensity temporal noise when operating near threshold. Results and validation of applied NUC on 3D flash LIDAR camera are presented. We characterize a 3D flash LIDAR camera with PIN diode architecture including range walk, gain characterization in both intensity and range domains. Characterization of 3D flash LIDAR imager was performed using a fiber laser operating at 1550 nm, 20 μJ energy per pulse, TTL triggering, a pulse generator to generate time delay necessary for triggering the laser from the camera ARM signal, and an attenuator for fine control of the output signal. Time delay is relative to the range domain, whereas output signal is relative to the intensity domain.
Laser radar for entry, descent, and landing (EDL) applications as well as the space docking problem could benefit from a low size, weight, and power (SWaP) beam control system. Moreover, an inertia free approach employing non-mechanical beam control is also attractive for laser radar that is intended to be employed aboard space platforms. We are investigating a non-mechanical beam steering (NMBS) sub-system based on liquid crystal polarization grating (LCPG) technology with emphasis placed on improved throughput and significant weight reduction by combining components and drastically reducing substrate thicknesses. In addition to the advantages of non-mechanical, gimbal free beam control, and greatly improved SWaP, our approach also enables wide area scanning using a scalable architecture. An extraterrestrial application entails additional environmental constraints, consequently an environmental test plan tailored to an EDL mission will also be discussed. In addition, we will present advances in continuous fine steering technology which would complement the coarse steering LCPG technology. A low-SWaP, non-mechanical beam control system could be used in many laser radar remote sensing applications including meteorological studies and agricultural or environmental surveys in addition to the entry, descent, and landing application.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.