We present experiments performed in parabolic flights and in space, demonstrating the use of Fluidic Shaping to create optical components in microgravity. By injecting optical liquid into a circular bounding frame in microgravity, surface tension drives the liquid to a minimum energy form of a spherical lens with sub-nanometric surface roughness. We will discuss the engineering challenges encountered in such experiments, and provide details and insights towards the future implementation of similar experiments in microgravity.
We view this set of experiments as the first milestones in expanding in-space manufacturing capabilities to also include optical components. Due to its simplicity, low power consumption and essentially zero waste, Fluidic Shaping can serve as a fabrication infrastructure for future long-duration space missions that must be self-sufficient. Due to its scale invariance, the method could potentially be used for the creation of large space telescopes, thus overcoming launch constraints.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.