Pyxel is a novel python tool for end-to-end detection chain simulation i.e. from detector optical effects to readout electronics effects. It is an easy-to-use framework to host and pipeline any detector effect model. It is suited for simulating both Charge-Coupled Devices, CMOS Image Sensors and Mercury Cadmium Telluride hybridized arrays. It is conceived as a collaborative tool to promote reusability, knowledge transfer, and reliability in the instrumentation community. We will provide a demonstration of Pyxel’s basic principles, describe newly added capabilities and the main models already implemented, and give examples of more advanced applications.
KEYWORDS: Particles, Charge-coupled devices, Data modeling, Silicon, Electrons, Computer simulations, Space operations, Monte Carlo methods, Stars, Sensors
ESA’s astrometry mission Gaia was launched in 2013 to establish the most accurate and complete map of the Milky Way by measuring the distance, position, proper motion, and astrophysical characteristics of two billion stars. It contains the largest focal plane ever flown in space comprising 106 CCDs. To downlink to Earth only useful data, an on-board algorithm was designed to discriminate between e.g. stars and cosmics- ionizing tracks left by energetic particles. A cosmic ray event generation simulator was developed to train and optimize this on-board source detection algorithm. We can now validate this model against Gaia data.
Pyxel is a novel, open-source and Python-based framework designed to host and pipeline any type of models simulating detector effects such as cosmic rays, detector PSF, various noise sources, Charge Transfer Inefficiency or persistence on images produced by CCD or CMOS-based imaging detectors. It is currently under development at the European Space Agency with the goal of release it to the broader detector scientist community. We present here the architecture of the framework, how to integrate new models in it and give a few examples of its current simulation capabilities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.