The understanding of processes occurring at the interface between two media are of prior importance in various fields of research, from material sciences to biology. A custom-made microscope objective based on the supercritical angle technique was developed in our group, allowing to probe these interfacial events by carrying out surface-sensitive and low invasive spectroscopy of aqueous samples. A biological example of particular interest is the comprehension of neurodegenerative diseases which seem caused by the interaction of specific peptides with the membrane of the neurons. Taking advantage of our optical setup, we used supercritical angle fluorescence spectroscopy to specifically monitor the interaction between a supported lipid bilayer (SLB) and the Amyloid β peptide, notably responsible of the Alzheimer disease. Different forms of the peptide (40 and 42 amino acids composition) were tested and the interfacial fluorescence measured to get information about the lipid integrity and mobility. The adsorption of the peptide was also characterized in terms of kinetic and affinity.
Downconversion is investigated as a promising way to enhance silicon solar cells efficiency. The efficiency of the
downconversion process is investigated for the (Pr3+, Yb3+) codoping in two fluoride hosts: KY3F10 and CaF2. Strong
near-infrared emission from ytterbium ions after excitation of praseodymium ions at 440 nm is observed in both KY3F10
and CaF2 as a result of the efficient energy transfer from praseodymium to ytterbium. In particular, very high Pr3+ to Yb3+ energy transfer efficiencies (ETE) are achieved for low Yb3+ and Pr3+ concentrations (ETE=97% in CaF2:0.5%Pr3+-
1%Yb3+) in CaF2 in comparison with KY3F10. A low Yb3+ concentration offers the advantage to limit the Yb3+
concentration quenching which is observed in other hosts, where the Yb3+ concentration has to be larger to achieve a
high ETE for solar cell applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.