Vintage 30-m class telecommunications antennas built in the 1960s and 1970s have been converted into radio telescopes in recent years, with especially notable conversions in the United Kingdom, South Africa, Australia, Ghana, and most recently in Mexico. These antennas were designed and built for operation at C-Band, but in some cases the surface conditions are sufficiently good that observations at Ku-Band and possibly at K-Band may prove feasible. As described in [1] an antenna conversion project is underway for the Tulancingo-I telecommunications antenna, located in Tulancingo de Bravo in the Mexican state of Hidalgo. Although the antenna was in active use for several decades, it has been replaced by other communications technologies and has not been used since early in the new millennium. The antenna uses near-field, shaped Cassegrain optics, consisting of a shaped parabolic primary reflector and a shaped hyperbolic sub-reflector. The primary reflector is 32 meters in diameter with a nominal focal length of 9.6 meters. A tertiary reflector redirects the beam along the elevation axis, following the Nasmyth configuration. This paper describes our work to determine the feasibility of using the antenna reflector optics in the 18 – 24 GHz range of the K-Band. Both photogrammetry and laser tracker measurements were used to determine the geometrical relationship between the primary, sub-reflector, and tertiary surfaces. We use these results, reported in [4], along with computer simulations, to explore the potential of the Tulancingo-I antenna for KBand observing.
The Hydrogen Intensity and Real-time Analysis Experiment (HIRAX) is a radio interferometer array currently in development, with an initial 256-element array to be deployed at the South African Radio Astronomy Observatory Square Kilometer Array site in South Africa. Each of the 6 m, f / 0.23 dishes will be instrumented with dual-polarization feeds operating over a frequency range of 400 to 800 MHz. Through intensity mapping of the 21 cm emission line of neutral hydrogen, HIRAX will provide a cosmological survey of the distribution of large-scale structure over the redshift range of 0.775 < z < 2.55 over ∼15,000 square degrees of the southern sky. The statistical power of such a survey is sufficient to produce ∼7 % constraints on the dark energy equation of state parameter when combined with measurements from the Planck satellite. Additionally, HIRAX will provide a highly competitive platform for radio transient and HI absorber science while enabling a multitude of cross-correlation studies. We describe the science goals of the experiment, overview of the design and status of the subcomponents of the telescope system, and describe the expected performance of the initial 256-element array as well as the planned future expansion to the final, 1024-element array.
Water vapour radiometers (WVRs) are critical to both site surveying and site management in microwave and mm-wave very long baseline interferometry (VLBI). We report on the first two years of progress made towards improving the state of water vapour radiometry at HartRAO, South Africa, and the LMT in Mexico, under a SAMexico bilateral programme. We report on progress in the development of low-cost site surveying instruments, multi-purpose cooled receivers, as well as refurbishment and upgrades to existing 22/31 GHz and 215 GHz tipping radiometers.
The 50-meter Large Millimeter Telescope (LMT) operating on the Sierra Negra in Mexico is the largest single- dish millimeter-wave telescope in the world. Although designed to work in the 3 mm and 1 mm bands, there is significant potential for LMT observations at centimeter wavelengths. Here, we summarize the scientific case and operational arguments for a K-band receiver system on the LMT, describe several of the unique technical challenges that the proposed installation would entail, and mention some possible solutions to these challenges.
Astronomical, astrometric and geodetic observations by mm-Wave Very Long Baseline Interferometry (VLBI) are adversely affected by precipitable water vapour (PWV) in the troposphere. Current water vapour radiometers (WVRs), such as that deployed at the Large Millimeter Telescope (LMT) site, are difficult to install and maintain, and are prohibitively expensive for surveying promising new sites for telescopes or for wide-spread deployment for a priori calibration. We report here on initial progress towards a Planar Integrated Low-Cost H2O Atmospheric Radiometric Detector (PILCHARD), which aims to reduce the cost of 22 GHz WVRs for site surveys, whilst eliminating the need for moving antennas. It is found that the required tip curve can be generated by a static antenna using multiple pencil beams from a multi-feed, non-traditional offset reflector, while the necessary system receiver temperature is easily achievable using planar integrated off-the-shelf components alone.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.