In this paper, an all-automatic optimized JTC based swimmer tracking system is proposed and evaluated on real video database outcome from national and international swimming competitions (French National Championship, Limoges 2015, FINA World Championships, Barcelona 2013 and Kazan 2015). First, we proposed to calibrate the swimming pool using the DLT algorithm (Direct Linear Transformation). DLT calculates the homography matrix given a sufficient set of correspondence points between pixels and metric coordinates: i.e. DLT takes into account the dimensions of the swimming pool and the type of the swim. Once the swimming pool is calibrated, we extract the lane. Then we apply a motion detection approach to detect globally the swimmer in this lane. Next, we apply our optimized Scaled Composite JTC which consists of creating an adapted input plane that contains the predicted region and the head reference image. This latter is generated using a composite filter of fin images chosen from the database. The dimension of this reference will be scaled according to the ratio between the head's dimension and the width of the swimming lane. Finally, applying the proposed approach improves the performances of our previous tracking method by adding a detection module in order to achieve an all-automatic swimmer tracking system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.