The eventual widespread insertion of microoptoelectromechanical systems (MOEMS) into the marketplace rests fundamentally on the ability to produce viable components that maximize optical performance while minimizing power consumption and size. Active control of surface topology allows for one component to perform multiple functions, thus reducing cost and complexity. Based on the patented MEMS compound grating (MCG), extension of the research at the College of Nanoscale Science and Engineering (CNSE) at the University of Albany, New York, to novel designs, materials, and fabrication methods yielded low-power, high-performance prototypes. The main focus of this work is on the development of a polymer version (including a sacrificial layer, in some designs) of the MCG, which allows for ease of fabrication and a reduced electrostatic actuation voltage. Following a system design effort, several generations of the component are fabricated to optimize the process flow. Component metrology, electromechanical characterization, and initial results of optical tests are reported. A second example presented is the design and prototype fabrication of a spring micrograting using a customized SOI process. This highly flexible component builds on the MCG concept and yields an order of magnitude reduction in actuation voltage.
The eventual, widespread insertion of Micro-Opto-Electro-Mechanical Systems (MOEMS) into the marketplace rests fundamentally on the ability to produce viable components that maximize optical performance while minimizing power consumption and size. In addition, the incorporation of optical reconfigurability into custom MOEMS devices offers an extra degree of freedom not possible with conventional components. Active control of surface topology allows for one component to perform multiple functions thus reducing cost and complexity. This paper will focus on the current status of the MOEMS research program at the University at Albany Institute for Materials’ (UAIM) NanoFab 200 with several examples described to illustrate component and system development. In particular, among the MOEMS research portfolio at UAIM, the development of selected MOEMS-based, active optics will be discussed. This active control of diffraction and reflection forms the basis for the utility of such devices.
Leveraging the extensive research expertise on the patented MEMS Compound Grating (MCG), emphasis will be placed on the extension of the approach to novel designs, materials and fabrication methods to yield low power, high performance prototypes. The main focus of this paper is on the development of a polymer version (including sacrificial layer, in some designs) of the MCG which allows for ease of fabrication and a reduced electrostatic actuation voltage. Following a system design effort, several generations of the component were fabricated to optimize the process flow. Component metrology, electromechanical characterization and initial results of optical tests will be reported. A second example presented is the design and prototype fabrication of a spring micrograting using a customized SOI process. This highly flexible component builds on the MCG concept and yields an order of magnitude reduction in actuation voltage. These examples will be presented against a backdrop of the broad UAIM program to provide an overview of the applications of MOEMS and their integration with complementary technologies at the wafer level.
Despite the recent sag in the optical telecom sector, the development and application of Micro-Opto-Electro-Mechanical Systems (MOEMS)-based devices for optical interconnects continues to expand. The utility of such fundamental research is finding increasing relevance in a variety of technical and commercial areas. This paper will report on the present status of the diffractive and reflective components and arrays that are being developed at the University at Albany’s Institute for Materials (UAIM) NanoFab 200. Selected examples include the current generation of the patented MEMS Compound Grating (MCG) and an innovative micro-scanner device, both of which are being examined for inclusion in prototype interconnect systems.
These devices are based on a dual technology development path which includes decreasing feature size and increasing integration level. The MCG prototypes are currently produced with 1-2 micron feature size in 144 element arrays. The surface topology of these components can be controlled using electrostatic attraction to yield both angular deflection and wavelength separation. The optical and mechanical performance of these devices that use either polysilicon or silicon dioxide as a structural material will be reported. Several prototype MCG array architectures have been interfaced with optical sources including VCSEL arrays to test optical interconnect concepts. In addition, recent work on an innovative micro-scanner will be discussed. The micro-scanner is based on a cantilever design with access electrodes to electrostatically control deflection in multiple planes. Details of the components including simulation, fabrication and initial prototype performance tests will be presented.
In this paper, modeling and simulation of a novel micro-centrifuge for biomedical and biochemical applications is described. The micro-centrifuge that we designed can work not only as a shaker but also as a detector of cell growth, which has great potential applications in bioanalysis. The initial design contains four channels for mixing or collecting of samples by centrifugal force. The rotor, the key component of this device, is actuated using electrostatic force. There are four electrodes on the substrate to actuate the micro-centrifuge rotation around the X-axis (lateral in plane) and the Y-axis (vertical in plane) respectively, and eight pairs of comb drives are used to actuate the micro-centrifuge rotation around the Z-axis (perpendicular to the XY plane). The multiple axis actuation design makes it very flexible to control the micro-centrifuge. Because of its small feature size, the cost of the reagent used for the micro-centrifuge will be greatly reduced. An array of micro-centrifuges will be designed to achieve a fast cycling time. A Finite Element Analysis (FEA) has been completed to analyze the static and dynamic performance of the micro-centrifuge, such as the natural frequencies, tilt angle, and driving voltage. A novel fabrication process using SOI technology has been proposed which is now being developed.
Optical ADD/DROP multiplexers (OADM) are incorporated into all-optical network structures that provide fixed access to a subset of the wavelengths in Wavelength Division Multiplexer (WDM) systems. The rapid growth of broadband data communications and the drive toward cost reduction have made optical MEMS (Micro- Electro-Mechanical Systems) an extremely attractive technology for applications in optical communications. This paper will present theoretical analysis, simulation and testing results of an ADD/DROP multiplexer based on the MEMS-based micro-actuators. The micro-actuator is a MEMS-based compound grating (MCG) with a reconfigurable surface that couples the mechanical motion with optical diffraction. The diffraction patterns depend on the wavelength, incident angle and the grating structural parameters. This property is used to design an OADM that can be applied to broad areas in optical communication. A theoretical analysis is presented to establish the relationship between diffraction beams and the structural parameters of the grating, the wavelength of incident light, incident angle. Prototypes of these micro-actuators have been fabricated. The initial testing demonstrated the feasibility of using the MCG as an OADM. New designs of the MCG for application to the 1.55um optical telecommunication standard will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.