In this paper, a novel electro-absorption modulation mechanism based on coupled-quantum-wells (CQWs) is proposed and demonstrated. Compared to a quantum-confined-stark-effect (QCSE) modulator with multiple fully decoupled single-QWs, the newly designed CQW modulator has two sub-quantum-wells partially coupled with a small barrier in between. Modulation is based on the change of electron and hole wave-function overlap in the CQWs, which requires a small bias electric field of <10 kV/cm) compared to the operation of a typical QCSE modulator which requires >50 kV/cm bias electrical field. Theoretically, the power consumption of this new CQW modulator can be lower than 20 fJ/bit and the speed can be higher than 10 Gbps, which outperforms the best Ge/SiGe QCSE modulator that has been previously demonstrated. A proof-of-concept Ge/SiGe CQW modulator based on this novel modulation mechanism was designed and fabricated. Instead of a traditional PIN diode structure, the new CQW modulator uses a PIP structure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.