This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Even in a 1D design style, single exposure of the 16 nm half-pitch M2 layer is very challenging for EUV lithography, because of its tight tip-to-tip configurations. Therefore, the industry is considering the hybrid use of ArFi-based SAQP combined with EUV Block as an alternative to EUV single exposure. As a consequence, the EUV Block layer may be one of the first layers to adopt EUV lithography in HVM.
In this paper, we report on the imec iN7 SAQP + Block litho performance and process integration, targeting the M2 patterning for a 7.5 track logic design. The Block layer is exposed on an ASML NXE:3300 EUV-scanner at imec, using optimized illumination conditions and state-of-the-art metal-containing negative tone resist (Inpria). Subsequently, the SAQP and block structures are characterized in a morphological study, assessing pattern fidelity and CD/EPE variability. The work is an experimental feasibility study of EUV insertion, for SAQP + Block M2 patterning on an industry-relevant N5 use-case.
At imec, a variety of novel membrane material options are investigated for the HVM pellicle application. One promising approach is based on carbon nanotubes (CNT). In this paper we outline different CNT based process options, and report results on their optical, thermal, and mechanical performance. In addition, we will report on their uniformity and robustness towards scanner application. Finally, the family of CNT-based membrane options will be compared to promising candidates fabricated using conventional film approaches that do not have a CNT layer.
Regarding the metal 2 layer, imec is evaluating two integration approaches: EUV single print and SAQP+EUV Block. Extensive work is reported on both approaches2,3. The work detailed in this paper will deal about the computational work done prior to tape-out for the EUV direct print option.
We will discuss the EUV source mask optimization for an ASML NXE:3300 EUV scanner. Afterwards we will shortly touch upon OPC compact modeling and more extensively on OPC itself. Based on the current design rules and MRC, printability checks indicate that only limited process windows are obtained. We propose ways to improve the printability through MRC and design. Applying those changes can potentially lead to a sufficient process window.
This paper will demonstrate the complementary RegC® and TWINSCANTM solution for improving the OPO by cooptimizing the correction capabilities of the individual tools, respectively. As a consequence, the systematic intra-field fingerprints can be decreased along with the overlay (OVL) error at wafer level. Furthermore, the application could be utilized for extending some of the scanner actuators ranges by inducing a pre-determined signatures. These solutions perfectly fit into the ASML Litho InSight (LIS) product in which feedforward and feedback corrections based on YieldStar overlay and other measurements are used to improve the OPO. While the TWINSCANTM scanner corrects for global distortions (up to third order) - scanner Correctable Errors ( CE), the RegC® application can correct for the None Correctable Errors (NCE) by making the high frequency NCE into a CE with low frequency nature. The RegC® induces predictable deformation elements inside the quartz (Qz) material of the reticle, and by doing so it can induce a desired pre-defined signature into the reticle. The deformation introduced by the RegC® is optimized for the actual wafer print taking into account the scale and ortho compensation by the scanner, to correct for the systematic fingerprints and the wafer overlay. These two applications might be very powerful and could contribute to achieve a better OPO performance.
Evaluation of non-actinic EUV mask inspection and defect printability on multiple EUV mask absorbers
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
View contact details
No SPIE Account? Create one