The Visible Integral-field Replicable Unit Spectrograph (VIRUS) consists of 156 identical spectrographs fed by 35,000 fibers from the upgraded 10-meter Hobby-Eberly Telescope (HET). VIRUS is in a phased deployment. At the submission of this paper, over half of the units are installed and the full support infrastructure is operational. This paper will describe the VIRUS infrastructure which includes the physical support system, the air cooling, the cryogenic cooling, and the temperature control of VIRUS. The paper will also discuss the various installation, maintenance, and operational procedures based on growing experience with the VIRUS array.
The Hobby-Eberly Telescope Wide Field Upgrade includes deployment of the fiber-fed VIRUS and LRS2 spectrographs. In total, over 35,000 optical fibers of around 20m lengths are coupled to the telescope. This paper discusses the routing of those fibers, the hardware for securing them, and their deployment. Routing of the fibers to accommodate telescope motion while minimizing length and bend is presented. Hardware solutions for securing the fibers with details of the input and output terminations are included. Operations to safely install the fibers on the telescope are also covered.
The Visible Integral-field Replicable Unit Spectrograph (VIRUS) consists of 156 identical spectrographs (arrayed as 78 pairs, each with a pair of spectrographs) fed by 35,000 fibers, each 1.5 arcsec diameter, at the focus of the upgraded 10 m Hobby-Eberly Telescope (HET). VIRUS has a fixed bandpass of 350-550 nm and resolving power R~750. The fibers are grouped into 78 integral field units, each with 448 fibers and 20 m average length. VIRUS is the first example of large-scale replication applied to optical astronomy and is capable of surveying large areas of sky, spectrally. The VIRUS concept offers significant savings of engineering effort and cost when compared to traditional instruments. The main motivator for VIRUS is to map the evolution of dark energy for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), using 0.8M Lyman-alpha emitting galaxies as tracers. The VIRUS array has been undergoing staged deployment starting in late 2015. Currently, more than half of the array has been populated and the HETDEX survey started in 2017 December. It will provide a powerful new facility instrument for the HET, well suited to the survey niche of the telescope, and will open up large spectroscopic surveys of the emission line universe for the first time. We will review the current state of production, lessons learned in sustaining volume production, characterization, deployment, and commissioning of this massive instrument.
The Hobby-Eberly Telescope (HET) is an innovative large telescope with 10 meter aperture, located in West Texas at the McDonald Observatory. The HET operates with a fixed segmented primary and has a tracker, which moves the fourmirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. We have completed a major multi-year upgrade of the HET that has substantially increased the field of view to 22 arcminutes by replacing the optical corrector, tracker, and prime focus instrument package and by developing a new telescope control system. The upgrade has replaced all hardware and systems except for the structure, enclosure, and primary mirror. The new, reinvented wide-field HET feeds the revolutionary Visible Integral-field Replicable Unit Spectrograph (VIRUS‡), fed by 35,000 fibers, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX§), a new low resolution spectrograph (LRS2), the Habitable Zone Planet Finder (HPF), and the upgraded high resolution spectrograph (HRS2). The HET Wide Field Upgrade has now been commissioned and has been in science operations since mid 2016 and in full science operations from mid 2018. This paper reviews and summarizes the upgrade, lessons learned, and the operational performance of the new HET.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.