In this work we show dilute nitride (InGaAsN and GaAsN) based laser diodes and detectors grown by Molecular Beam Epitaxy as good candidates to be used in optical fiber sensors applications. The maturity of GaAs technology allow us to develop laser devices less expensive and complex than the present InP based diodes which exhibit limited performances. Laser emission up to 1.23 μm is achieved for these devices. In addition, a new generation of (In)GaAsN quantum well intersubband detectors is also presented. This structures can be tailored to operate in a very short interval of wavelengths (namely 0.4 to 1 μm) centered in the range between 1.3 and 2 μm with a responsivity around 3 mA/W. The excellent selectivity of these detectors make them suitable to be matched with the emission wavelength of the source, thus avoiding the interference of external light sources. Both devices can be tuned to work in the range of interest for optical fibers, giving rise to a number of potential applications including Er-doped optical amplifiers, and optical fiber sensors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.