Singlet fission (SF) is a charge carrier multiplication process that can occur in organic semiconductors and has potential to enhance (opto)electronic device performance. We examine how SF depends on molecular packing with functionalized tetracene (R-Tc) crystals which have the same monomer properties but different crystal packings with ‘slip-stack’ (R=TES) and ‘gamma’ (R=TBDMS) packing structures. Using temperature-dependent photoluminescence spectroscopy, we find that the triplet pair state (TT) in R-Tc systems under study is non-emissive, and the PL is dominated by that from lowenergy emissive trap states in TES-Tc and from aggregate states in TBDMS-Tc, with the emissive channels competing with SF. We also study the effects of photodegradation from endoperoxide formation on R-Tc and the relationship between photodegradation and SF and find that the ‘gamma’-packed TBDMS-Tc is more photostable than the ‘slip-stacked’ TESTc derivative. To analyze SF and competitive pathways, we constructed a 4-state kinetic model to reproduce the observed PL data, which predicts maximum SF free triplet yields of 190% for TES-Tc and 185% for TBDMS-Tc at room temperature.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.