Voltage imaging has become an emerging technique to record membrane potential change in living cells. Yet, compared to the conventional electrophysiology, imaging approaches are still limited to relative membrane potential changes, losing important information conveyed by absolute value of membrane voltage. This challenge comes from several factors affecting the signal intensity, such as concentration, illumination intensity, and photobleaching. Spectroscopy is a quantitative method that shows potential to report the state of molecules in situ. Here, we apply electronic pre-resonance stimulated Raman scattering (SRS) imaging to detect near-infrared absorbing microbial rhodopsin voltage sensors in E. coli. The use of newly developed near-infrared microbial rhodopsins (Ganapathy et. al. 2017. JACS, 2017, 139(6):2338- 44) enables electronic pre-resonance SRS imaging with single cell sensitivity. By spectral profile analysis, we identified voltage-sensitive SRS peaks. The spectral signature can be used as part of a quantitative approach to measure membrane potential and enable mapping of absolute voltage in a neural network.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.