Concentrating Photo Voltaic (CPV) systems maximize energy harvested from the sun with multi-junction solar cells of less area, reducing related implementation costs and reaching energy production thresholds up to 38,9 %. Nowadays, CPV systems are generally implemented in solar energy farms in a permanent location, however, these systems could be used in other dynamic contexts, such as vehicles or portable devices. In this way, mechanical and geometrical parameters related to manipulation, transportation and installation should be carefully considered at the design stage. Besides, each condition of use presents different variables affecting these parameters. In all, there is not an established architecture for these systems, opening up the possibility of radically changing their use, geometry and components. Therefore, a concept of a methodical process for designing of CPV systems is proposed in order to predict their behavior in terms of implementation and energy production. This might allow the development of robust concepts that can be adapted to different context of use as required, providing an itinerant character and thus extending the field of implementation of these systems beyond a static use.
The relevant variables for the use of CPV systems are determined through experimentation considering the implementation of Fresnel lenses as light concentrators. This allows generating a structured design guide composed of different methods of measurement, selection and development. The methodical process is based on a perspective of functional modules considering needs, technical aspects and particular usage conditions of each design and it would provide appropriate guidelines in each circumstance.
Photovoltaic (PV) applications such as in the architectural, automotive, and aerospace industries face design contradictions because they are expected to produce a lot of energy but are constrained by available area, surface shape, incident irradiance, shadows, and other aspects that have a negative influence on the energy produced by the solar panel. Solar competition vehicles are some of these challenging PV applications. The design of such solar arrays needs to consider efficiency evaluation in order to optimize space; it is difficult not to install solar modules in areas impacted by shadows. A design procedure for a solar array configuration based on shadow analysis for competition vehicles is presented. The principle is that shadows in moving objects can be simulated, since the vehicle, the earth and the sun are are moving in semipredictable patterns, thus net energy collection can be forecast. The case study presented is the solar array design of a vehicle that participated in the World Solar Challenge 2013. The obtained results illustrate how the employment of the procedure gives insights on important aspects to consider and also delivers qualitative and quantitative information for decision making. In addition, the experience in competition highlights some issues to be considered, modified, or improved in further vehicle designs.
In automotive industry, the dashboard has been ergonomically developed in order to keep the driver focused on the horizon while driving, but the possibility to access external electronic devices constraints the driver to turn away his face, generating dangerous situations in spite of the short periods of time. Therefore, this work explores the integration of Head-Up Displays and Head-Down Displays in automobiles, proposing configurations that give to drivers the facility to driving focused. In this way, some of the main ergonomic comments about those configurations are proposed; and also, some technical comments regarding the implemented arrangements are given.
Currently, in the automotive industry the interaction between drivers and Augmented Reality (AR) systems is a subject of analysis, especially the identification of advantages and risks that this kind of interaction represents. Consequently, this paper attempts to put in evidence the potential applications of Head-Up (Display (HUD) and Head-Down Display (HDD) systems in automotive vehicles, showing applications and trends under study. In general, automotive advances related to AR devices suggest the partial integration of the HUD and HDD in automobiles; however, the right way to do it is still a moot point.
In solar vehicle competition, the available space for installation of the solar panel in the car is limited. In order to optimize space, it is difficult not to install solar modules in areas impacted by shadows, even if they cause reduction of efficiency in the overall photoelectric generation. Shadow patterns arise from the relative position of the sun to the earth, and the relative position of the vehicle towards both of them. Since vehicle, earth and sun are moving in semi-predictable patterns, computer simulations can cross and match data from such sources to forecast generation behavior. The outputs of such simulations are shadow patterns on the surface of the vehicle, indicating locations that are suitable or unsuitable to install solar cells. This paper will show the design procedure of the solar panel for a Challenger Class solar vehicle that participated in the World Solar Challenge 2013, intended to increase the net energy collection. The results obtained, illustrate how the employment of a computational tool can help in the acquisition of both qualitative and quantitative information, related to shadows position and their impact on energy collection. With data inputs such as vehicle geometry and its relative position towards the route, the tool was used to evaluate different possible configurations of solar panel module distribution and select the ones that are more convenient to the given scenario. Therefore, this analysis allows improving the solar panel design by considering important variables that were often overlooked.
Solar competition cars are a very interesting research laboratory for the development of new technologies heading to their further implementation in either commercial passenger vehicles or related applications. Besides, worldwide competitions allow the spreading of such ideas where the best and experienced teams bet on innovation and leading edge technologies, in order to develop more efficient vehicles. In these vehicles, some aspects generally make the difference such as aerodynamics, shape, weight, wheels and the main solar panels. Therefore, seeking to innovate in a competitive advantage, the first Colombian solar vehicle “Primavera”, competitor at the World Solar Challenge (WSC)-2013, has implemented the usage of a Concentrating Photovoltaic (CPV) system as a complementary solar energy module to the common silicon photovoltaic panel. By harvesting sunlight with concentrating optical devices, CPVs are capable of maximizing the allowable photovoltaic area. However, the entire CPV system weight must be less harmful than the benefit of the extra electric energy generated, which in adjunct with added manufacture and design complexity, has intervened in the fact that CPVs had never been implemented in a solar car in such a scale as the one described in this work. Design considerations, the system development process and implementation are presented in this document considering both the restrictions of the context and the interaction of the CPV system with the solar car setup. The measured data evidences the advantage of using this complementary system during the competition and the potential this technology has for further developments.
Nowadays, it is very important to explore the qualitative characteristics of autonomous mobility systems in automobiles, especially disruptive technology like Vehicle to Vehicle (V2V) and Infrastructure to Vehicle (I2V), in order to comprehend how the next generation of automobiles will be developed. In this sense, this research covers a general review about active safety in automobiles where V2V and I2V systems have been implemented; identifying the more realistic possibilities related to V2V and I2V technology and analyzing the current applications, some systems in development process and some future conceptual proposals. Mainly, it is notorious the potential development of mixing V2V and I2V systems pointing to increase the driver's attention; therefore, a configuration between these two technologies and some augmented reality system for automobiles (Head-Up Display and Head-Down Display) is proposed. There is a huge potential of implementation for this kind of configuration once the normative and the roadmap for its development can be widely established.
Nowadays, technologies like improved reality systems, sensing systems and communication systems, are moving forward with a high rate. This situation is very convenient for military groups that are trying to access modern technologies. According to that, it is very feasible to propose the development of electronic devices that increase the possibilities for soldiers to be alive during an armed conflict, providing them with information that can bring strategic benefits on the combat field, which is the main goal of this research. Therefore, it is proposed in this paper the early design stages of a smart army helmet, focusing in their low cost production; however, all the electronics stages specified here are proposed as prototypes.
This paper gives a short description of a low cost communication device. The wireless intercom devices presented here enable communication between any two of these products through specialized synchronization options. This communication system consists of two functionally linked radiofrequency intercoms in the 2.4GHz free band. Each of these devices consist of a hands-free cellular system containing a microphone and a loudspeaker, which is connected individually to each communication device through a plug of four (4) contacts and three point five (3.5) mm in diameter, it also has a single USB connector for battery charging (without data bus), which is made of a lithium polymer, and finally three (3) buttons from where certain functions are controlled: volume level, audio filters, on, off, among other.
Throughout the development of the automotive industry, supporting activities related with driving has been material of
analysis and experimentation, always seeking new ways to achieve greater safety for the driver and passengers. With the
purpose of contributing to this topic, in order to contribute to this subject, this paper summarizes from past research
experiences the use of Head-Up Display systems applied to the automobile industry, covering it from two main points of
discussion: the first one, from a technical point of view, in which the main principles of optical design associated with a
moderate-cost experimental set up are brought out; and the second one, an operational approach where an applied
driving graphical interface is presented. Up to now, the results suggest that the experimental set up here discussed could
be adaptable to any automobile vehicle, but it is needed further research and investment.
This article has the purpose to analyze, based on the current technology, the factors that have been implemented in HUD
systems, with the purpose to establish which its functions are and which are the advantages and disadvantages of these
systems, in order to compare their relevance at the moment the system is implemented in an automobile. To fulfill this
objective an optical and perception analysis was proposed through an instrumental set up, with common characteristics
to any automobile, making possible the implementation of a large amount of theoretical and practical considerations.
Finally, some recommendations, considerations and conclusions were made, all focused in a proposal of the way that
that these systems can be approached.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.