NASA’s return to the Moon presents unparalleled opportunities to advance high-impact scientific capabilities. At the cutting edge of these possibilities are extremely high-resolution interferometric observations at visible and ultraviolet wavelengths. Such technology can resolve the surfaces of stars, explore the inner accretion disks of nascent stars and black holes, and eventually enable us to observe surface features and weather patterns on nearby exoplanets. We have been awarded Phase 1 support from NASA's Innovative Advanced Concepts (NIAC) program to explore the feasibility of constructing a high-resolution, long-baseline UV/optical imaging interferometer on the lunar surface, in conjunction with the Artemis Program. A 1996 study comparing interferometers on the Moon versus free-flyers in space concluded that, without pre-existing lunar infrastructure, free-flyers were preferable. However, with the advent of the Artemis Program, it is now crucial to revisit the potential of building lunar interferometers. Our objective is to conduct a study with the same level of rigor applied to large baseline, free-flying interferometers during the 2003-2005 NASA Vision Missions Studies. This preparation is essential for timely and effective utilization of the forthcoming lunar infrastructure. In this paper, we highlight the groundbreaking potential of a lunar surface-based interferometer. This concept study will be a huge step forward to larger arrays on both the moon and free-flying in space, over a wide variety of wavelengths and science topics. Our Phase 1 study began in April 2024, and here we present a concise overview of our vision and the progress made so far.
MoonLITE (Lunar InTerferometry Explorer) is an Astrophysics Pioneers proposal to develop, build, fly, and operate the first separated-aperture optical interferometer in space, delivering sub-milliarcsecond science results. MoonLITE will leverage the Pioneers opportunity for utilizing NASA’s Commercial Lunar Payload Services (CLPS) to deliver an optical interferometer to the lunar surface, enabling unprecedented discovery power by combining high spatial resolution from optical interferometry with deep sensitivity from the stability of the lunar surface. Following landing, the CLPS-provided rover will deploy the pre-loaded MoonLITE outboard optical telescope 100 meters from the lander’s inboard telescope, establishing a two-element interferometric observatory with a single deployment. MoonLITE will observe targets as faint as 17th magnitude in the visible, exceeding ground-based interferometric sensitivity by many magnitudes, and surpassing space-based optical systems resolution by a factor of 50×. The capabilities of MoonLITE open a unique discovery space that includes direct size measurements of the smallest, coolest stars and substellar brown dwarfs; searches for close-in stellar companions orbiting exoplanet-hosting stars that could confound our understanding and characterization of the frequency of Earth-like planets; direct size measurements of young stellar objects and characterization of the terrestrial planet-forming regions of these young stars; measurements of the inner regions and binary fraction of active galactic nuclei; and a probe of the very nature of spacetime foam itself. A portion of the observing time will also be made available to the broader community via a guest observer program. MoonLITE takes advantage of the CLPS opportunity to place an interferometer in space on a stable platform – the lunar surface – and delivers an unprecedented combination of sensitivity and angular resolution at the remarkably affordable cost point of Pioneers.
The balloon-borne Japan-United States Infrared Interferometry Experiment (JUStIInE) is a pathfinder for the first space-based far-IR interferometer. JUStIInE will mature the system-level technology readiness of spatio-spectral far-IR interferometry and demonstrate this technique with scientific observations. Operating at wavelengths from 30 to 90 µm, JUStIInE will provide unprecedented sub-arcsecond angular resolution and spectroscopic data. Our plan is to develop a cryogenic Michelson beam combiner and integrate it with an existing and tested telescope optical system and gondola from the Japanese Far-infrared Interferometric Telescope Experiment (FITE). With two JUStIInE balloon flights we plan to collect, calibrate, analyze, and publish scientific results based on the first far-IR spatio-spectral observations of young stellar objects, evolved stars, and the active galactic nucleus of NGC 1068. The NASA Astrophysics Roadmap envisages a future in which interferometry is applied across the electromagnetic spectrum, starting in the far-infrared. The Far-IR Probe recommended in the 2021 Decadal Survey presents an opportunity to take that important step. A Far-IR Probe mission based on this concept will enable us to understand terrestrial planet formation and spectroscopically study individual distant galaxies to understand the astrophysical processes that govern their evolution.
The Contemporaneous LEnsing Parallax and Autonomous TRansient Assay (CLEoPATRA) space mission concept is designed to provide variable-baseline simultaneous microlensing parallax measurements for NASA’s flagship Roman Space Telescope mission and for terrestrial telescopes. We here describe the design of the mission, including discussion of our efforts to develop the means to greatly reduce the data downlink bandwidth using artificial intelligence and modern fanless GPUs, FPGAs and Tensor Processing Units. We demonstrate a reduction of data downlinked by a factor of up to 28,000 permitting communications between Earth and a small, power-limited craft in deep space. We describe radiation testing of inferencing hardware, functionality of our artificial intelligence code, compressive sensing applied to photometric lightcurves and the implementation of new, integrated optics to permit a 20cm baffled telescope to fit fully inside a small scientific spacecraft.
The mirrors of astronomical interferometers need to be aligned within a fraction of a wavelength relative to one another. This would be especially challenging for optical instruments with mirrors separated by hundreds of meters flying in Earth’s orbit. However, in this work, we show that this alignment can be achieved by means of: (i) flying the mirror cluster in a particular orbital configuration; (ii) closing a coarse positioning loop using GNSS (Global Navigation Satellite System); and (iii) closing a fine wavefront-control loop using light from a laser guide star. The orbital configuration is designed to keep the mirrors passively pointing at the target star (up to a small orbital perturbation) while the interferometer cluster is orbiting and changing its baseline. The laser guide star would be flying in the same orbit but in the opposite direction. In medium- or high-Earth orbit, the interferometer would be able to observe a star for several hours per orbit. In this work, we analyzed the performance of an optical space interferometer consisting of nine 20 cm mirrors mounted on CubeSats and flying 3 km apart (together with a combiner and a laser guide star small satellite). This configuration supports a resolution of 0.04 milliarcseconds - an order of magnitude better than current ground-based interferometers. We estimate the performance of this system imaging stellar surfaces assuming perfect wavefront estimation and control.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.