Scaling the coherent power of mid-infrared (IR)-emitting quantum cascade lasers (QCLs) to the multi-watt range remains an important objective for applications where the laser beam needs to travel through air to remote targets, such as freespace communication links. For such applications requiring long-range pointing accuracy, measurements of beam stability are also important. We present beam-quality measurement results of narrow-ridge (4-5 μm), 4.6 μm-emitting buriedheterostructure (BH) QCLs. A 40-stage, step-tapered active-region (STA) structure was grown by MOCVD, and ICP etching was used to make deep ridges. InP:Fe was preferentially regrown in the field regions by using an SiO2 mask for ridge etching and Hydride Vapor Phase Epitaxy (HVPE). The HVPE process is attractive for selective regrowth, since high growth rates (0.2-0.3 μm/min) can be utilized, and highly planar top surfaces can readily be obtained. HVPE regrowth has been previously employed for BH devices of MBE-grown QCL ridges, but beam-stability measurements were not reported. HR-coated, 7.5 mm-long devices were measured under QCW operation (100 μsec pulse width, 0.5%-10% duty cycle) – very good beam quality factors, M2 < 1.2, were observed for both 4 μm and 5 μm ridge widths, but the narrower ridge exhibited better pointing stability. Collimated 5 μm-wide BH devices displayed some small degree of centroid motion with increasing power (< 0.125 mrad). This corresponds to a targeting error of ~1.25 cm over a distance of 100 m. Significantly improved lateral-beam stability was observed for narrower ridge width, although at the expense of reduced output power.
We present and compare the existing methods of heteroepitaxy of III-Vs on silicon and their trends. We focus on the epitaxial lateral overgrowth (ELOG) method as a means of achieving good quality III-Vs on silicon. Initially conducted primarily by near-equilibrium epitaxial methods such as liquid phase epitaxy and hydride vapour phase epitaxy, nowadays ELOG is being carried out even by non-equilibrium methods such as metal organic vapour phase epitaxy. In the ELOG method, the intermediate defective seed and the mask layers still exist between the laterally grown purer III-V layer and silicon. In a modified ELOG method called corrugated epitaxial lateral overgrowth (CELOG) method, it is possible to obtain direct interface between the III-V layer and silicon. In this presentation we exemplify some recent results obtained by these techniques. We assess the potentials of these methods along with the other existing methods for realizing truly monolithic photonic integration on silicon and III-V/Si heterojunction solar cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.