This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Recently, ghost imaging was transposed into the time-domain to image ultrafast varying waveforms. Here, we report on a novel proof-of-concept experiment of computational ghost imaging in the time domain using wavelength multiplexing. By encoding different time-varying intensity patterns onto separate wavelength channels, we can perform simultaneous measurement of multiple realizations. This allows us to perform ghost imaging in real-time, without the need of probing the time-varying object repeatedly. Specifically, we use a programmable spectral filter to encode a set of 32 Hadamard-like time-varying intensity patterns onto a broadband LED light source. An electro-optic intensity modulator driven by an electrical waveform is used to create the time-varying object to be measured. The object is then reconstructed “blindly” by correlating the time-averaged transmission of each wavelength channels with the digitized form of the time-varying Hadamard patterns that illuminate the object. The temporal resolution of the measurement is currently to 0.5 s limited by the speed at which the variable spectral filter can be manipulated.
View contact details
No SPIE Account? Create one