Controlled shape changes of polymerized liquid crystalline coatings is often achieved via prepatterning the molecular orientation of liquid crystal (LC) monomers at the stage of preparation. In this work, using the so-called hybrid alignment of the LC, we produce surface structures of positive Gaussian curvature of coatings without complex techniques such as photoalignment. A mixture of LC monomers coated onto a glass plate with planar alignment of the director is exposed to air, which promotes vertical alignment. The competing planar and homeotropic boundary conditions result in a) thickness dependent director and b) spontaneous formation of spindle-like regions, limited by disclination loops, that are called the reverse tilt domains (RTDs). The disclination separates different director configurations inside and outside the RTD. The RTDs produce relatively big protrusions (100 − 600 nm) of the LC network coating. Actuation of the coating by heat increases the amplitude of RTD protrusions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.