Publisher's Note: This paper, originally published on 16 October 2023, was replaced with a corrected/revised version on 29 November 2023. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.
Ultra-stable laser with PDH (Pound-Drever-Hall) frequency stabilization technology is an indispensable tool in optical atomic clocks, gravitational wave detection, and optical fiber optical frequency transfer. As the demand for space and transportable science missions rises, the ultra-stable laser is required to have an auto-lock function. During auto-lock, the PZT is scanned in pre-set steps to find the resonance point with the optical reference cavity. To determine steps for the first lock automatically and update steps when pre-set steps are changed by long-term drift, the Grid Search algorithm with priori knowledge is utilized. To verify the reliability of the algorithm, the system out of lock is simulated 904 times. The relock with the parameters determined by the Grid Search algorithm is achieved with a success rate of 100% and a mean relock time of about 0.9s. The Grid Search algorithm with priori knowledge proposed in this paper can optimize the hyperparameters in auto-lock.
Ultra-narrow linewidth laser plays a very important role in the high-precision optical frequency transfer via optical fibers. We have designed and realized a compact portable laser system for transportable communication band ultra-narrow linewidth laser. Based on the method of topology optimization design, a stable optical board is developed. Designed and developed a series of small optical grade devices without exercise rules, making the optical system more stable. The optical system we designed is suitable for transportable ultra-narrow linewidth laser.
As the local oscillator of the space optical clock, the ultra-stable laser determines the short-to-medium-term frequency stability of the space optical clock. Considering the space station’s restrictions on load weight and volume, as well as the impact of vibration and shock during launch, a tunable external cavity diode laser with small size, stable structure and no elastic adjustment device was developed. Optimized the design of the structure of the optical path board, developed small optical components, and developed a double-sided optical path system based on this. Experimental tests show that the free-running line width of the laser is about 175 kHz, which can run stably and reliably for a long time. At the same time, considering the deformation of the optical path substrate in the space microgravity environment, the topology optimization design of the optical board was carried out. Through mechanical simulation analysis, the maximum deformation of the optical path substrate under the influence of gravity is 0.43 μm, which initially meets the requirements of space applications.
Narrow linewidth frequency-stabilized lasers are crucial in the research of optical clocks, precision spectroscopy, and tests of fundamental physics. Narrow linewidth laser with the wavelength of 698nm is essential in the development of Sr atom optical clocks that will be used for the frequency standards in the future. Here we report the recent development of ultra-stable lasers at national time service center, Chinese academy of sciences (NTSC). In the experiment, the frequency of an extended cavity diode laser at the wavelength of 698nm is stabilized to a reference cavity with a finesse of ~130000 using the Pound-Drever-Hall methods. The optical heterodyne beat between two independent lasers shows that the linewidth of one diode laser reaches 0.88Hz. The fractional frequency stability removed linear frequency shift is better than 2×10-15.
Two diode lasers at 698 nm are separately locked to two independent optical reference cavities with a finesse of about 128,000 by the Pound–Drever–Hall method. The more accurate coefficient between voltage and frequency of the error signal is measured, with which quantitative evaluation of the effect of many noises on the frequency stability can be made much more conveniently. A temperature-insensitive method is taken to reduce the effect of residual amplitude modulation on laser frequency stability. With an active fiber noise cancellation, the optical heterodyne beat between two independent lasers shows that the linewidth of one diode laser reaches 1 Hz. The fractional Allan deviation removed linear frequency shift less than 30 mHz/s is below 2.6×10−15 with 1- to 100-s average time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.