The Mirror-slicer Array for Astronomical Transients (MAAT) is a new IFU for the OSIRIS spectrograph on the 10.4-m Gran Telescopio CANARIAS (GTC) at La Palma, spectrograph that has been recently upgraded with a new detector and moved to the Cassegrain focus. Funding has been secured to build MAAT. We present the nearly final design, its expected performances, the different options that were studied, and an analysis of the spectrograph aberrations. MAAT will take advantage of the OSIRIS mask cartridge for multi-object spectroscopy. The IFU will be in a box that will take the place of a few masks. It is based on the Advanced Image Slicer (AIS) concept as are MUSE and KMOS on the VLT (among many others). The field is 10" x 7" with 23 slices 0.305" wide giving a spaxel size of 0.254" x 0.305". The wavelength range is 360 nm to 1000 nm. The small space envelope, the maximum weight of the mask holder, and the curvature and tilt of the slit created additional design challenges. The spectral resolution will be about 1.6 times larger than with a standard slit of 0.6" because of the smaller size of the slices. All the eleven VPHs and grisms will be available to provide a broad spectral coverage with low to intermediate resolution (R=600 to 4100). To maximize the resolution of a spectrograph designed for a slit twice the width of the slices, we are in the process of measuring the wavefront of the spectrograph aberrations by using 2 out-of-focus masks with pinholes along the slit. We will then correct some of these aberrations with MAAT.
KEYWORDS: Telecommunications, Data communications, Spectrographs, Telescopes, Control systems, Wireless communications, Spectrographs, Data communications, Multiplexers, Antennas, Time metrology, Chemical elements
This paper presents a design proposal for controlling the five thousand fiber positioners within the focal plate of the DESI instrument. Each of these positioners is a robot which allows positioning its optic fiber with a resolution within the range of few microns. The high number and density of these robots poses a challenge for handling the communication from a central control device to each of these five thousand. Furthermore, an additional restriction applies as the required time to communicate to every robot of its position must be smaller than a second. Additionally. a low energy consumption profile is also desired.
Both wireless and wired communication protocols have been evaluated, proposing single-technology-based architectures and hybrid ones (a combination of them). Among the wireless solutions, ZigBee and CyFi have been considered. Using simulation tools these wireless protocols have been discarded as they do not allow an efficient communication. The studied wired protocols comprise I2C, CAN and Ethernet.
The best solution found is a hybrid multilayer architecture combining both Ethernet and I2C. A 100 Mbps Ethernet based network is used to communicate the central control unit with ten management boards. Each of these boards is a low-cost, low-power embedded device that manages a thirty six degrees sector of the sensing plate. Each of these boards receives the positioning data for five hundred robots and communicate with each one through a fast mode plus I2C bus. This proposal allows to communicate the positioning information for all five thousand robots in 350 ms total.
In the large-scale, Dark Energy Spectroscopic Instrument (DESI), thousands of fiber positioners will be used. Those are
robotic positioners, with two axis, and having the size of a pen. They are tightly packed on the focal plane of the
telescope. Dedicated micro-robots have been developed and they use 4mm brushless DC motors. To simplify the
implementation and reduce the space occupancy, each actuator will integrate its own electronic control board. This board
will be used to communicate with the central trajectory generator, manage low level control tasks and motor current
feeding. In this context, we present a solution for a highly compact electronic. This electronic is composed of two layers.
The first is the power stage that can drive simultaneously two brushless motors. The second one consists of a fast
microcontroller and deals with different control tasks: communication, acquisition of the hall sensor signals,
commutation of the motors phases, and performing position and current regulation. A set of diagnostic functions are also
implemented to detect failure in the motors or the sensors, and to sense abnormal load change that may be the result of
two robots colliding.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.