In this contribution we present a broadband static Fourier transform spectrometer (bsFTS) based on a single- mirror interferometer containing only off-the-shelf optical components and an uncooled microbolometer detector
array. The system uses concave mirrors instead of lenses and therefore covers a wide spectral range from 3.6 μm to 17 μm at a spectral resolution of 12 cm-1. Furthermore, dispersion effects can be minimized and the system can thus be designed with increased temperature stability. We demonstrate the optical and mechanical design of
the current laboratory prototype and compare the instrument to a scanning Fourier transform infrared (FTIR) spectrometer. Additionally, we present a technique for simultaneously acquiring the sample spectrum and the background spectrum. Thereby, a variation of the background over time can be compensated continuously and hence the bsFTS presented in this contribution offers significant potential with regard to long-term stability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.