Training data is an essential ingredient within supervised learning, but time consuming, expensive and for some applications impossible to acquire. A possible solution is to use synthetic training data. However, the domain shift of synthetic data makes it challenging to obtain good results when used as training data for deep learning models. It is therefore of interest to refine synthetic data, e.g. using image-to-image translation, to improve results. The aim of this work is to compare different methods to do image-to-image translation of synthetic training data of thermal IR-images using generative adversarial networks (GANs). Translation is done both using synthetic thermal IR-images alone, as well as including pixelwise depth and/or semantic information. To evaluate, we propose a new measure based on the Frechet Inception Distance, adapted to work for thermal IR-images. We show that by adapting a GAN model to also include corresponding pixelwise depth data to each synthetic IR-image, the performance is improved compared to using only IR-images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.