Lensfree on-chip microscopy, which harnesses holography principles to capture interferometric light-field encodings without the need of lenses, is an emerging microscopy modality with widespread interest given the large field-of-view (FOV) compared to lens-based microscopy systems. In particular, there is a growing interest on the development of high-quality lensfree on-chip color microscopy. In this study, we propose a multi-laser spectral lightfield fusion microscopy using deep computational optics for achieving lensfree on-chip color microscopy. We will demonstrate that leveraging deep computational optics can enable imaging resolution beyond the diffraction limit without the use of any complex hardware-based super-resolution techniques, such as aperture scanning. The capabilities of the microscope are examined for whole-slide pathology. The superior imaging resolution of the instrument is demonstrated by imaging of a series of biological specimens demonstrating the true color imaging capability of the instrument while showcasing the large FOV of the instrument.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.