Skin mimicking optical tissue phantoms are widely used in diagnostics systems for characterization, optimization, routine calibration and validation. In general, solid phantoms are more preferred in comparison to liquid phantoms. Therefore, our aim is to prepare and characterize the solid tissue phantoms having skin equivalent optical properties. In this work, we have used epoxy resin and hardener as a base material and titanium oxide (TiO2) nanoparticles and ink as a scatterer and absorber media, respectively. The total transmission (Tt), collimated transmission (Tc), and diffuse reflectance (Rd) spectra of the developed phantoms were measured with an integrating sphere installed in UV-VIS spectrometer within the wavelength range 400-700 nm. To characterize the optical properties such as absorption (μa), reduced scattering (μs’), and anisotropy factor (g) of the developed tissue phantoms, the numerical model based on Inverse Adding Doubling (IAD) has been used. With various concentrations of absorber and scatterer, a calibration curve was prepared. The calculated experimental optical properties from IAD matched with the predicted intrinsic optical properties of the skin. Thus, the preliminary results suggest that the recipe used in this study may be used as an alternative approach to developing skin mimicking solid optical phantom for diagnostics system applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.