Due to the demands of the market to increase efficiencies and power densities of gas engines, existing ignition schemes are gradually reaching their limits. These limitations initially triggered the development of laser ignition as an effective alternative, first only for gas engines and now for a much wider range of internal combustion engines revealing a number of immediate advantages like no electrode erosion or flame kernel quenching. Furthermore and most noteworthy, already the very first engine tests about 5 years ago had resulted in a drastic reduction of NOx emissions. Within this broad range investigation, laser plasmas were generated by ns Nd-laser pulses and characterized by emission and Schlieren diagnostic methods. High-pressure chamber experiments with lean hydrogen-methane-air mixtures were successfully performed and allowed the determination of essential parameters like minimum pulse energies at different ignition pressures and temperatures as well as at variable fuel air compositions. Multipoint ignition was studied for different ignition point locations. In this way, relevant parameters were acquired allowing to estimate future laser ignition systems. Finally, a prototype diode-pumped passively Q-switched Nd:YAG laser was tested successfully at a gasoline engine allowing to monitor the essential operation characteristics. It is expected that laser ignition involving such novel solid-state lasers will allow much lower maintenance efforts.
Laser ignition of internal combustion engines reveals a number of advantages. High-pressure chamber experiments with lean hydrogen-methane-air mixtures were successfully performed and monitored by optical Schlieren diagnostics. Multipoint ignition was tested for 2 and 3 ignition points with different separations. In this way, relevant ignition parameters were acquired allowing estimate future laser ignition systems. Transportation of high intensity 6-ns Nd:YAG laser pulses via photonic bandgap fibers with hollow core was investigated. Evacuation of the core for the first time allowed to increase the peak intensity of the propagating pulses far beyond the breakdown limit of silica yielding 600 μJ fiber output with single mode characteristics.
A Nd:YAG laser was employed to ignite methane- and hydrogen-air mixtures to investigate relevant parameters of laser ignition. The lean side ignition limit of methane was found to be at air/fuel-equivalence ratios (λ) of 2.4 applying a laser pulse energy of 50 mJ. It has to be mentioned, however, that above λ = 2.2 only slowest combustions causing weak pressure rises could be observed. Successful ignitions of hydrogen-air mixtures were achieved up to λ = 8 but it was not possible to examine the lean side limit due to weakest pressure rises far below detection limits for λ >8. Despite much lower values of minimum ignition energy for reported hydrogen-air mixtures in the literature, the minimum laser pulse energies examined for ignition are of the same magnitude as for ignition of rich methane-air mixtures lying around 5 mJ. Minimum pulse energy needed for ignition was decreasing with increasing pressure for hydrogen-air mixtures showing the same trend as in case of methane. The ignition delay time for hydrogen at λ = 2.0 could be observed as ~7 ms being 40 times shorter compared to methane at the same air/fuel ratio. Unfavorable transmission losses of laser energy were observed for methane/air mixtures below λ = 2.1 demanding optimized focusing optics and temporal pulse shaping for future laser ignition systems.
Laser-induced ignition of methane-air mixtures of varied composition was investigated experimentally using nano-second pulses generated by Q-switched Nd:YAG lasers (wavelength 1064 nm, 532 nm and 355 nm) at initial pressures up to 4 MPa. The minimum focal spot diameter was found to be about 20 μm for effective ignition, independent of the laser wavelength, indicating that small impurity particles provide the seeds for laser plasma generation. The minimum laser pulse energy needed for ignition ranged from 2-15 mJ decreasing reciprocally with initial pressure and with fuel equivalence ratio Φ in a mixing of Φ=0.91 to Φ=0.56. Corresponding threshold intensities ranged from 1010 to 1011 W/cm2. In this way, evidence for a non-resonant breakdown mechanism was established. Optical in-situ diagnosis of water vapor concentration covering the whole timespan of the combustion process in a stationary high pressure vessel with four optical windows was performed involving linear absorption measurements over the entire spectral absorption linewidth by rapidly tuned diode laser radiation at 2.55 μm. Additionally, planar laser-induced fluorescence was measured in a time-resolving fashion yielding 3D determination of the OH concentrations during the process. To the knowledge of the authors, these are the first results on laser-induced ignition under laboratory conditions well above atmospheric pressure being relevant for several technical combustion systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.