We describe scientific objective and project status of an astronomical 6U CubeSat mission VERTECS (Visible Extragalactic background RadiaTion Exploration by CubeSat). The scientific goal of VERTECS is to reveal the star-formation history along the evolution of the universe by measuring the extragalactic background light (EBL) in the visible wavelength. Earlier observations have shown that the near-infrared EBL is several times brighter than integrated light of individual galaxies. As candidates for the excess light, first-generation stars in the early universe or low-redshift intra-halo light have been proposed. Since these objects are expected to show different emission spectra in visible wavelengths, multi-color visible observations are crucial to reveal the origin of the excess light. Since detection sensitivity of the EBL depends on the product of the telescope aperture and the field of view, it is possible to observe it with a small but wide-field telescope system that can be mounted on the limited volume of CubeSat. In VERTECS mission, we develop a 6U CubeSat equipped with a 3U-sized telescope optimized for observation of the visible EBL. The bus system composed of onboard computer, electric power system, communication subsystem, and structure is based on heritage of series of CubeSats developed at Kyushu Institute of Technology in combination with high-precision attitude control subsystem and deployable solar array paddle required for the mission. The VERTECS mission was selected for JAXA-Small Satellite Rush Program (JAXA-SMASH Program), a new program that encourages universities, private companies and JAXA to collaborate to realize small satellite missions utilizing commercial small launch opportunities, and to diversify transportation services in Japan. We started the satellite development in December 2022 and plan to launch the satellite in FY2025.
We’re developing an immersion grating made of CdZnTe designed for a high-dispersion mid-infrared spectrograph (10-18 μm, R = λ/Δλ ∼ 30, 000) to be onboard the next-generation infrared space telescope GREX-PLUS. The adoption of an immersion grating will reduce the spectrometer size to 1/n (1/n3 in volume, n: refractive index) compared to conventional diffraction gratings. To determine this absorption coefficient accurately, we need to take the effect of multiple reflection into account that depend on the refractive index. However, the accurate refractive index of CdZnTe (Δn < 10−4) at 10-18 μm below 20 K has not been measured yet. Therefore, we’re developing a measurement system of the refractive index at cryogenic temperatures in the mid-infrared range. We adopt the minimum deviation method in this system to measure the refractive index, measuring the apex and deviation angle of the prismatic sample of material to be measured. Here we give an overview of the measurement system, as well as preliminary results of the refractive index measurement.
KEYWORDS: Satellites, Electron beam lithography, Analog to digital converters, Galactic astronomy, Satellite communications, Control systems, Visible radiation, Stars, Engineering, Optical filters
The Visible Extragalactic background RadiaTion Exploration by CubeSat (VERTECS) is designed for observing Extragalactic Background Light(EBL). VERTECS mission requires attitude control stability better than 10 arcsec (1σ) per minute, pointing accuracy better than 0.1 deg, and the slew rate faster than 1 deg per sec. We discuss the software-in-the-loop (SIL) attitude simulator simulation to verify whether the current Attitude Determination Control System (ADCS) design and the planned orbit can meet the requirements for EBL observations. We simulate the attitude control system with the simulation software, taking into account the attitude control commands, the parameters of the ADCS hardware, and the expected attitude disturbances in the assumed orbit. This simulation shows the sequence of attitude maneuvers needed to meet the requirement. The simulation results indicate that the current observation sequence is feasible.
In 2022-23, a conceptual change of the optical train around the focus of the infrared telescope of HiZ-GUNDAM project has been developed: a double Kösters prism is newly introduced as a key optical component to divide the incident near-infrared beam (0.9-2.5um) into four wave-bands, enabling to focus four band images simultaneously onto a 1k×1k MCT sensor array. It reduces the total cost compared with the previous design where three 1k×1k MCT sensors were to be used. The prism consists of four pieces of triangular columns made of anhydrous fused silica glued on the base plate made of fused silica. We carefully selected the glue which is durable against the vibration during launch as well as the harmful environment onboard (heat shock, irradiation, vacuum). We will show its design, simple simulation of structure/vibration analysis and the status of the fabrication of the double Kösters prism.
The extragalactic background light (EBL) is the integrated emission from out of our Galaxy.Its observation is crucial for revealing the history of star-formation from the early universe to the present epoch. Visible Extragalactic background RadiaTion Exploration by CubeSat (VERTECS) is a 6U astronomical satellite to observe the EBL in visible wavelength from 0.4 µm to 0.8 µm. To observe the EBL, a telescope with 11 lenses and a high-performance CMOS sensor are equipped within 3U volume. The remaining 3U comprises the bus section mainly based on the bus design previously developed at Kyushu Institute of Technology. This paper describes the design and verification processes of the structure and thermal model of the satellite to fulfill the interface and mission requirements. From a mission perspective, the precise attitude and orbit control system unit is mounted on the same interface plate as the telescope to meet stringent pointing stability requirements during observations. The purpose of the stiff design of this interface plate is to minimize structural deformation. Furthermore, integrating multiple external antennas with relatively large X-band and S-band communication units require effective routing harness management. Static stress analysis is performed under the quasistatic loading condition. In addition, modal analysis is also conducted to fulfill the strength and stiffness requirements of the launcher. A series of mechanical environmental tests (shock, random, and sinusoidal vibrations) have been conducted to verify the design and analysis results. The results showed that designed model can fundamentally withstand the launch environment.
The HiZ-GUNDAM is a time-domain and multi-messenger astronomy mission by monitoring high-energy astronomical transient events such as gamma-ray bursts (GRBs). The HiZ-GUNDAM is designed to provide alerts of high-redshift GRBs with wide field X-ray monitors (WFXMs) and a co-onboard 30-cm optical and near-infrared telescope (NIRT) for immediate photometric follow-up observations. The HiZ-GUNDAM satellite automatically changes its attitude toward the discovered transient object, starts the follow-up observations with NIRT, and sends alert information including the detailed position, the apparent magnitude, and the photometric redshift of the transient object within one hour. This mission was selected as one of the mission concept candidates of the competitively-chosen medium-class mission of ISAS/JAXA. Aiming for launch in 2030s, conceptual studies of the satellite and onboard instruments are currently ongoing. The five-band simultaneous observation at 0.5-2.5 μm is realized by a beam splitter and a Kösters prism. The incoming beam is split into visible light (0.5-0.9 µm) and near-infrared light by the beam splitter, and visible light is received by an optical detector. The near-infrared light is additionally split into four bands (0.9-1.3 μm, 1.3-1.7 μm, 1.7-2.1 μm, and 2.1-2.5 μm, respectively) by the Kösters prism, and received by an infrared detector. The telescope, the beam-splitter, the Kösters prism, and the optical detector are cooled down to <200 K, and the infrared detector is additionally cooled down to <120 K by radiation cooling. All mirrors in the telescope are made of aluminum alloy to reduce alignment errors during cooling. In this presentation, we introduce the current status of the development of NIRT onboard HiZ-GUNDAM.
Theoretical calculations predict that high-resolution spectroscopy of H2O gas lines in the mid-infrared region is the most promising method to observationally identify the snow-line, which has been proposed as the critical factor separating gas giants from solid planets in the planetary formation process. This requires the spectroscopic observations from space with R = λ/Δλ ≥ 30, 000. For this purpose, we propose a mid-infrared (10-18 μm) high-resolution spectrometer to be onboard the GREX-PLUS (Galaxy Reionization EXplorer and PLanetary Universe Spectrometer) mission. We are developing "immersion grating” spectroscopy technology for high-resolution spectroscopy in space. We have chosen CdZnTe as a candidate for the optical material. We report the current status of the development of the CdZnTe immersion grating, including evaluation of its optical properties (absorption coefficient and refractive index) at cryogenic temperatures, development of an anti-reflection coating with a moth-eye structure for wide-wavelength coverage, and verification of machinability for grating production. We plan to make a prototype spectrometer to demonstrate the capability of the immersion grating with ground-based observations in the N-band (λ = 8–13 μm) and beyond.
We have developed a compact broadband infrared imaging Fourier transform spectrometer, referred to as the 2D FTIR, employing common path wavefront division phase-shift interferometry. The system comprises a 3-reflector point-topoint optical setup with overlapping paths, incorporating two free-form mirrors and a pair of 20 mm high and 40 mm wide planar mirrors. Initially, we establish a one-dimensional multi-slit object plane with spacing tailored to match the FPA detector pixel size, effectively preventing destructive interference. Through precise optimization of the parameters of the two free-form mirrors (Mirror 1: 4th-order Zernike polynomial; Mirror 2: 6th-order Zernike polynomial), we achieve precise beam collimation, reflection through a phase shifter, and subsequent refocusing onto the FPA detector. Utilizing a commercial uncooled bolometer camera with a resolution of 640x480 pixels and a pixel size of 17μm, we attain optimal performance across the 4-20μm wavelength range, coupled with a generous 6mm diameter field of view. The spectrometer boasts a remarkable wavenumber resolution of 2.7 cm-1, with R (λ=4μm) ≈ 1000, alongside a spatial resolution of 34μm. All components seamlessly fit within a 170x150x80 mm vacuum frame. The 2D FT-IR enables the acquisition of spectral maps post-image capture and offers a broad measurement wavelength range of 4-20 μm. After completion of development, we plan to employ it to study the generation mechanisms of cryogenically frozen organic matter simulating Titan's haze and to measure the low-temperature continuous spectral transmittance and refractive index of the GREX-PLUS spectroscopic components. Additionally, due to its high vibration resistance and compact design, we intend to deploy it as a spectrometer for compact satellites developed by JAXA. Lastly, it will serve as a pivotal test instrument for the PLANETS telescope, facilitating the evaluation of the telescope's resistance to atmospheric disturbances.
We are developing an Immersion Grating (IG) made of CdZnTe which is designed for a high-dispersion midinfrared spectrograph (10-18 μm, R = λ/Δλ ∼ 30, 000) to be onboard the next-generation infrared space telescope GREXPLUS (Galaxy Reionization EXplorer and PLanetary Universe Spectrometer). The adoption of an IG will reduce the spectrometer size to 1/n in length (1/n3 in volume, n: refractive index) compared to conventional diffraction gratings. In order to determine the absorption coefficient of the high-resistivity CdZnTe, we developed a new measurement system for transmittance in 10-18 μm with cryogenic common-path double beam optics equipped with filament lamp source inside the vacuum chamber, which enables accurate determination of the transmittance at the cryogenic temperature by considering the effect of the multiple Fresnel reflection at the sample surface. By the new transmittance measurement system, the CdZnTe sample can be cooled down to ~6 K by employing cooled long wavelength band pass filter (λ > 7 μm) to attenuate the peak emission of the filament lamp (λ ~ 2 μm). In the present paper, we report the results of transmittance measurement with high precision (δτ~0.03%) by our new equipment for the high-resistivity CdZnTe, and the absorption coefficient α of high-resistivity CdZnTe. By applying the value of refractive index n at T > 5.7 K reported recently, α was estimated to be 0.00225 cm-1 and 0.00036 cm-1 at T~300 K and ~12 K, respectively at λ~10 μm in wavelength. In contrast to low-resistivity CdZnTe, the obtained values for α of high-resistivity CdZnTe have shown only slight temperature dependence, and the absorption coefficient values were smaller than the requirement: α<0.01 cm-1 for the IG material. The high-resistivity CdZnTe was likely to be a candidate material of IG for GREX-PLUS high-resolution spectrograph..
HiZ-GUNDAM is a future satellite mission designed for exploring the early universe using gamma-ray bursts (GRBs). The satellite is equipped with two main instruments: a wide field X-ray monitor (WFXM) and a near infrared telescope (NIRT). And its mission data processing unit (MPU) plays an important role in data processing. When a transient source occurs and the X-rays enter the WFXM, a cross-shaped image is produced on the focal plane image sensor. Once the WFXM’s data are sent to the MPU, the direction of the source is determined from the center position. Furthermore, if there are no known stellar objects in this direction and if they are not hot pixels or other anomalies, the event is classified as a GRB candidate. To evaluate the software for this series of judgments, we investigated the angular resolution by this software algorithm utilizing the cross image obtained by the lobster eye optics (LEO).
HiZ-GUNDAM is a future satellite mission for gamma-ray burst observations. One of the mission instruments is the wide-field X-ray monitor with a field of view (FoV) of 0.6 steradian at 0.4–4.0 keV, consisting of Lobster Eye Optics (LEO) and pnCCD image sensors. LEOs need to be spatially well-aligned to achieve both of wide FoV and fine position accuracy of < 3 arcmin. To address this challenge, we explored an alignment method with X-rays and developed an optical frame. This study reports on the evaluation of the optical frame, our alignment method, and x-ray performance of the optical system.
The HiZ-GUNDAM mission is one of the candidates for the JAXA’s competitive M-class missions. HiZ-GUNDAM revolutionizes our understanding of the high redshift universe and promotes multi-messenger astronomy. Combining a highly sensitive wide-field X-ray monitor, a near-infrared telescope, and autonomous spacecraft slew capability makes a powerful machine to hunt interesting X-ray transients and immediately identify their counterparts in near-infrared. The Wide Field X-ray Monitor (WFXM) is the main instrument to search for the transients in the soft X-ray band. WFXM comprises lobster-eye optics (LEO) and pnCCD as an X-ray imager. LEO has a size of 40 mm x 40 mm and a radius of curvature of 600 mm. We are planning to use the LEO manufactured by Photonis Inc. One WFXM module has three by three LEOs, which cover a field of view of 12 deg x 12 deg. The current baseline design is composed of 16 modules to cover 0.7 sr sky. The candidate focal imager is the pnCCD detector by PNSensor Inc. We will present the current status and prospects of the WFXM.
HiZ-GUNDAM is a future satellite mission whose mission concept was approved by ISAS/JAXA, and it is one of the future satellite candidates of JAXA’s competitive medium-class mission. HiZ-GUNDAM will lead time-domain astronomy in 2030s, and its key sciences are (1) exploration of the early universe with high-redshift gamma-ray bursts, and (2) contribution to the multi-messenger astronomy. Two mission payloads are aboard HiZ-GUNDAM to realize these two scientific issues. The wide field X-ray monitors which consist of Lobster Eye optics array and focal imaging sensor, monitor ~0.5 steradian field of view in 0.5–4 keV energy range. The near infrared telescope with an aperture size of 30 cm in diameter performs simultaneous 5-band photometric observation in 0.5–2.5 μm wavelength with Koester’s prism for X-ray transients discovered by Wide Field X-ray Monitor. In this paper, we introduce the mission overview of HiZ-GUNDAM while the information contained herein may change in future studies.
The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission is to be launched into orbit around the second Lagrangian point (L2) in the Sun-Earth system. Taking advantage of the thermal environment in L2, a 2.5m-class large IR telescope is cooled below 8K in combination with effective radiant cooling and a mechanical cooling system. SPICA adopts a cryogen-free system to prevent the mission operation lifetime being limited by the amount of cryogen as a refrigerant. Currently, the mechanical cooler system with the feasible solution giving a proper margin is proposed. As a baseline design, 4K / 1K-class Joule-Thomson coolers are used to cool the telescope and thermal interface for Focal Plane Instruments (FPIs). Additionally, two sets of double stage stirling coolers (2STs) are used to cool the telescope shield. In this design, nominal operation of FPIs can be kept when one mechanical cooler is in failure. In this paper, current baseline configuration of the mechanical cooler system and current status of mechanical coolers developments which need to satisfy the specific requirements of SPICA cryogenic system are presented.
The mid/far infrared hosts a wealth of spectral information that allows direct determination of the physical state of matter in a large variety of astronomical objects, unhindered by foreground obscuration. Accessing this domain is essential for astronomers to much better grasp the fundamental physical processes underlying the evolution of many types of celestial objects, ranging from protoplanetary systems in our own milky way to 10-12 billion year old galaxies at the high noon of galaxy formation in our universe. The joint ESA/JAXA SPICA mission will give such access for the astronomical community at large, by providing an observatory with unprecedented mid- to far-infrared imaging, polarimetric and spectroscopic capabilities.
The ESA/JAXA SPICA mission is a candidate for the ESA Cosmic Vision Medium Class M5 opportunity. Since 2019 an Airbus Defence and Space team has been performing a trade-off study (on behalf of ESA) to establish a baseline telescope optical configuration and design, which can meet the mission scientific performance requirements. This paper describes the telescope baseline design selected, with first estimates of the expected optical performance. The optical design wavelength is 20 microns for an operating temperature of 8 K covering a total bandwidth of 12 to 420 microns over a 30 arc minutes field of view, with a total required collecting area of at least 4.0 m². The fundamental mission science driver is to achieve a sky background (astrophysical sources) limited performance. The telescope is designed to illuminate three instruments namely; SMI (JAXA - Japan), SAFARI (SRON - Netherlands) and B-BOP (CEA - France).
We present an overview of the cryogenic system of the next-generation infrared observatory mission SPICA. One of the most critical requirements for the SPICA mission is to cool the whole science equipment, including the 2.5 m telescope, to below 8 K to reduce the thermal background and enable unprecedented sensitivity in the mid- and far-infrared region. Another requirement is to cool focal plane instruments to achieve superior sensitivity. We adopt the combination of effective radiative cooling and mechanical cryocoolers to accomplish the thermal requirements for SPICA. The radiative cooling system, which consists of a series of radiative shields, is designed to accommodate the telescope in the vertical configuration. We present thermal model analysis results that comply with the requirements to cool the telescope and focal plane instruments.
SMI (SPICA Mid-infrared Instrument) is one of the three focal-plane science instruments for SPICA. SMI is the Japanese-led instrument proposed and managed by a university consortium. SMI covers the wavelength range from 10 to 36 μm with four separate channels: the low-resolution (R = 60 – 160) spectroscopy function for 17 – 36 μm, the broad-band (R = 5) imaging function at 34 μm, the mid-resolution (R = 1400 – 2600) spectroscopy function for 18 – 36 μm, and the high-resolution (R = 29000) spectroscopy function for 10 – 18 μm. In this presentation, we will show the latest design and specifications of SMI as a result of feasibility studies.
We present an overview of the thermal and mechanical design of the Payload Module (PLM) of the next- generation infrared astronomy mission Space Infrared Telescope for Cosmology and Astrophysics (SPICA). The primary design goal of PLM is to cool the whole science assembly including a 2.5 m telescope and focal-plane instruments below 8 K. SPICA is thereby expected to have very low background conditions so that it can achieve unprecedented sensitivity in the mid- and far-infrared. PLM also provides the instruments with the 4.8 K and 1.8 K stages to cool their detectors. The SPICA cryogenic system combines passive, effective radiative cooling by multiple thermal shields and active cooling by a series of mechanical cryocoolers. The mechanical cryocoolers are required to provide 40 mW cooling power at 4.8 K and 10 mW at 1.8 K at End-of-Life (EoL). End-to-end performance of the SPICA cryocooler-chain from 300 K to 50 mK was demonstrated under the framework of the ESA CryoChain Core Technology Program (CC-CTP). In this paper, we focus on the recent progress of the thermal and mechanical design of SPICA PLM which is based on the SPICA mission proposal to ESA.
SMI (SPICA Mid-infrared Instrument) is one of the two focal-plane science instruments for SPICA. SMI is the Japanese led instrument proposed and managed by a nation-wide university consortium in Japan and planned to be developed in collaboration with Taiwan and the US. SMI covers the wavelength range from 12 to 36 μm with 4 separate channels: the low-resolution (R = 50-120) spectroscopy function for 17-36 μm, the broad-band (R = 5) imaging function at 34 μm, the mid-resolution (R = 1300-2300) spectroscopy function for 18-36 μm, and the high-resolution (R = 28000) spectroscopy function for 12-18 μm. In this paper, we show the results of our conceptual design and feasibility studies of SMI.
Measurements in the infrared wavelength domain allow us to assess directly the physical state and energy balance of cool matter in space, thus enabling the detailed study of the various processes that govern the formation and early evolution of stars and planetary systems in the Milky Way and of galaxies over cosmic time. Previous infrared missions, from IRAS to Herschel, have revealed a great deal about the obscured Universe, but sensitivity has been limited because up to now it has not been possible to fly a telescope that is both large and cold. Such a facility is essential to address key astrophysical questions, especially concerning galaxy evolution and the development of planetary systems.
SPICA is a mission concept aimed at taking the next step in mid- and far-infrared observational capability by combining a large and cold telescope with instruments employing state-of-the-art ultra-sensitive detectors. The mission concept foresees a 2.5-meter diameter telescope cooled to below 8 K. Rather than using liquid cryogen, a combination of passive cooling and mechanical coolers will be used to cool both the telescope and the instruments. With cooling not dependent on a limited cryogen supply, the mission lifetime can extend significantly beyond the required three years. The combination of low telescope background and instruments with state-of-the-art detectors means that SPICA can provide a huge advance on the capabilities of previous missions.
The SPICA instrument complement offers spectral resolving power ranging from ~50 through 11000 in the 17-230 µm domain as well as ~28.000 spectroscopy between 12 and 18 µm. Additionally, SPICA will be capable of efficient 30-37 µm broad band mapping, and small field spectroscopic and polarimetric imaging in the 100-350 µm range. SPICA will enable far infrared spectroscopy with an unprecedented sensitivity of ~5x10-20 W/m2 (5σ/1hr) - at least two orders of magnitude improvement over what has been attained to date. With this exceptional leap in performance, new domains in infrared astronomy will become accessible, allowing us, for example, to unravel definitively galaxy evolution and metal production over cosmic time, to study dust formation and evolution from very early epochs onwards, and to trace the formation history of planetary systems.
The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission is a Japanese astronomical infrared satellite project optimized for mid' to far-infrared observatories. It will be launched at ambient temperature and cooled down on orbit by mechanical coolers on board with an efficient radiative cooling system, which allow us to have a 3.5m cooled (4.5K) telescope in space. SPICA will answer a number of important problems in present-day astronomy, ranging from the star-formation history of the universe to the formation of planets, owing to its high spatial resolution and unprecedented sensitivity in the mid- to far-infrared. The large aperture mirror for cryogenically use in space, however, demand a challenging development for the telescope system. A single aperture design of the primary mirror will be adopted for the SPICA telescope rather than deployable mirror designs to avoid further complexity and ensure the feasibility. The number of actuators for the primary mirror, if needed, will be minimized. Silicon carbide and carbon-filter reinforced silicon carbide are extensively investigated at present as the prime candidate materials for the SPICA primary mirror. This presentation reports the current status of the SPICA telescope system development.
The fairing of the launcher selected for the Space Infrared telescope for Cosmology and Astrophysics (SPICA) mission is not compatible with a primary mirror of 3.5m in diameter. Thus three alternative optical designs of the SPICA Telescope Assembly (STA) with a primary mirror of reduced size were defined and their theoretical optical performances assessed. The impact of the size reduction on the STA optical performances was then quantified. Based on the results of the study, we defined a STA optical design optimum in terms of optical performances and of accommodation of instruments in the STA focal surface.
KEYWORDS: Infrared telescopes, Space telescopes, Telescopes, Optical instrument design, Cryogenics, Infrared radiation, Cooling systems, Space telescopes, Cryogenics, Electrical breakdown, James Webb Space Telescope, Space operations
The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) is a pre-project of JAXA in collaboration
with ESA to be launched in the 2020s. The SPICA mission is to be launched into a halo orbit around
the second Lagrangian point in the Sun-Earth system, which allows us to use effective radiant cooling in combination
with a mechanical cooling system in order to cool a 2.5m-class large IR telescope below 8K. Recently,
a new system design in particular thermal structure of the payload module has been studied by considering
the technical feasibility of a cryogenic cooled telescope within current constraints of the mission in the CDF
(Concurrent Design Facility) study of ESA/ESTEC. Then, the thermal design of the mechanical cooler system,
for which the Japanese side is responsible, has been examined based on the CDF study and the feasible
solution giving a proper margin has been obtained. As a baseline, 4K / 1K-class Joule-Thomson coolers are
used to cool the telescope and thermal interface for Focal Plane Instruments (FPIs). Additionally, two sets of
double stirling coolers (2STs) are used to cool the Telescope shield. In this design, nominal operation of FPIs
can be kept when one mechanical cooler is in failure.
SMI (SPICA Mid-infrared Instrument) is one of the two focal-plane scientific instruments planned for new SPICA, and
the Japanese instrument proposed and managed by a university consortium in Japan. SMI covers the wavelength range of
12 to 36 μm, using the following three spectroscopic channels with unprecedentedly high sensitivities: low-resolution
spectroscopy (LRS; R = 50 - 120, 17 - 36 μm), mid-resolution spectroscopy (MRS; R = 1300 - 2300, 18 - 36 μm), and
high-resolution spectroscopy (HRS; R = 28000, 12 - 18 μm). The key functions of these channels are high-speed dustband
mapping with LRS, high-sensitivity multi-purpose spectral mapping with MRS, and high-resolution molecular-gas
spectroscopy with HRS. This paper describes the technical concept and scientific capabilities of SMI.
We present the new design of the cryogenic system of the next-generation infrared astronomy mission SPICA under the
new framework. The new design employs the V-groove design for radiators, making the best use of the Planck heritage.
The new design is based on the ESA-JAXA CDF study (NG-CryoIRTel, CDF-152(A)) with a 2 m telescope, and we
modified the CDF design to accommodate the 2.5 m telescope to meet the science requirements of SPICA. The basic
design concept of the SPICA cryogenic system is to cool the Science Instrument Assembly (SIA, which is the
combination of the telescope and focal-plane instruments) below 8K by the combination of the radiative cooling system
and mechanical cryocoolers without any cryogen.
LiteBIRD is a next generation satellite aiming for the detection of the Cosmic Microwave Background (CMB) B-mode polarization imprinted by the primordial gravitational waves generated in the era of the inflationary universe. The science goal of LiteBIRD is to measure the tensor-to-scaler ratio r with a precision of δr < 10-3♦, offering us a crucial test of the major large-single-field slow-roll inflation models. LiteBIRD is planned to conduct an all sky survey at the sun-earth second Lagrange point (L2) with an angular resolution of about 0.5 degrees to cover the multipole moment range of 2 ≤ ℓ ≤ 200. We use focal plane detector arrays consisting of 2276 superconducting detectors to measure the frequency range from 40 to 400 GHz with the sensitivity of
3.2 μK·arcmin. including the ongoing studies.
The infrared space telescope SPICA (Space Infrared Telescope for Cosmology and Astrophysics) is a next-generation astronomical project of the Japan Aerospace Exploration Agency, which features a 3 m class and 6 K cryogenically cooled space telescope. This paper outlines the current status for the preliminary structural design of the SPICA payload module. Dedicated studies were conducted for key technologies to enhance the design accuracy of the SPICA cryogenic assembly and mitigate the development risk. One of the results is described for the concept of the on-orbit truss separation mechanisms, which aim to both reduce the heat load from the main truss assembly and isolate the microvibration by changing the natural frequency of the spacecraft.
The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) is a pre-project of JAXA in collaboration with ESA to be launched around 2025. The SPICA mission is to be launched into a halo orbit around the second Lagrangian point in the Sun-Earth system, which allows us to use effective radiant cooling in combination with a mechanical cooling system in order to cool a 3m large IR telescope below 6K. The use of 4K / 1K-class Joule-Thomson coolers is proposed in order to cool the telescope and provide a 4K / 1K temperature region for Focal Plane Instruments (FPIs). This paper introduces details of the thermal design study for the SPICA payload module in the Risk-Mitigation-Phase (RMP), in which the activity is focused on mitigating the mission’s highest risks. As the result of the RMP activity, most of all the goals have been fully satisfied and the thermal design of the payload module has been dramatically improved.
We present the current status of SPICA (Space Infrared Telescope for Cosmology and Astrophysics), which is a mission optimized for mid- and far-infrared astronomy with a cryogenically cooled 3.2 m telescope. SPICA is expected to achieve high spatial resolution and unprecedented sensitivity in the mid- and far-infrared, which will enable us to address a number of key problems in present-day astronomy, ranging from the star-formation history of the universe to the formation of planets. We have carried out the “Risk Mitigation Phase” activity, in which key technologies essential to the realization of the mission have been extensively developed. Consequently, technical risks for the success of the mission have been significantly mitigated. Along with these technical activities, the international collaboration framework of SPICA had been revisited, which resulted in maintenance of SPICA as a JAXA-led mission as in the original plan but with larger contribution of ESA than that in the original plan. To enable the ESA participation, a SPICA proposal to ESA is under consideration as a medium-class mission under the framework of the ESA Cosmic Vision. The target launch year of SPICA under the new framework is FY2025.
We present the mission design of LiteBIRD, a next generation satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation (CMB) detection. The science goal of LiteBIRD is to measure the CMB polarization with the sensitivity of δr = 0:001, and this allows testing the major single-field slow-roll inflation models experimentally. The LiteBIRD instrumental design is purely driven to achieve this goal. At the earlier stage of the mission design, several key instrumental specifications, e.g. observing band, optical system, scan strategy, and orbit, need to be defined in order to process the rest of the detailed design. We have gone through the feasibility studies for these items in order to understand the tradeoffs between the requirements from the science goal and the compatibilities with a satellite bus system. We describe the overview of LiteBIRD and discuss the tradeoffs among the choices of scientific instrumental specifications and strategies. The first round of feasibility studies will be completed by the end of year 2014 to be ready for the mission definition review and the target launch date is in early 2020s.
AKARI, the Japanese satellite mission dedicated to infrared astronomy was launched in 2006 February and exhausted its liquid helium in 2007 August. During the cold mission phase, the Infrared Camera (IRC) onboard carried out an all-sky survey at 9 and 18µm with better spatial resolution and higher sensitivity than IRAS. Both bands also have slightly shorter wavelength coverage than IRAS 12 and 25μm bands and thus provide different information on the infrared sky. All-sky image data of the IRC are now in the final processing and will be released to the public within a year. After the exhaustion of the cryogen, the telescope and focal plane instruments of AKARI had still been kept at sufficiently low temperatures owing to the onboard cryocooler. Near-infrared (NIR) imaging and spectroscopic observations with the IRC had continued until 2011 May, when the spacecraft had a serious problem in the power supply system that forced us to terminate the observation. The IRC carried out nearly 20000 pointing observations in total despite of its near-earth orbit. About a half of them were performed after the exhaustion of the cryogen in the spectroscopic modes, which provided high-sensitivity NIR spectra from 2 to 5µm without disturbance of the terrestrial atmosphere. During the warm mission phase, the temperature of the instrument gradually increased and changed the array operation conditions. We present a summary of AKARI/IRC observations, including the all-sky mid-infrared diffuse data as well as the data taken in the warm mission phase.
The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) is a 3.2m cooled (below 6K) telescope
mission which covers mid- and far-IR waveband with unprecedented sensitivity. An overview of recent design
updates of the Scientific Instrument Assembly (SIA), composed of the telescope assembly and the instrument
optical bench equipped with Focal Plane Instruments (FPIs) are presented. The FPI international science and
engineering review is on-going to determine the FPI suite onboard SPICA: at present the mandatory instruments
and functions to perform the unique science objectives of the SPICA mission are now consolidated. The final
decision on the composition of the FPI suite is expected in early 2013. Through the activities in the current pre-project
phase, several key technical issues which impact directly on the instruments’ performances and the science
requirements and the observing efficiency have been identified, and extensive works are underway both at
instrument and spacecraft level to resolve these issues and to enable the confirmation of the SPICA FPI suite.
WISH, Wide-field Imaging Surveyor for High-redshiftt, is a space mission concept to conduct very deep and widefield
surveys at near infrared wavelength at 1-5μm to study the properties of galaxies at very high redshift beyond the
epoch of cosmic reionization. The concept has been developed and studied since 2008 to be proposed for future
JAXA/ISAS mission. WISH has a 1.5m-diameter primary mirror and a wide-field imager covering 850 arcmin2. The
pixel scale is 0.155 arcsec for 18μm pitch, which properly samples the diffraction-limited image at 1.5μm. The main
program is Ultra Deep Survey (UDS) covering 100 deg2 down to 28AB mag at least in five broad bands. We expect to
detect <104 galaxies at z=8-9, 103-104 galaxies at z=11-12, and 50-100 galaxies at z<14, many of which can be feasible
targets for deep spectroscopy with Extremely Large Telescopes. With recurrent deep observations, detection and light
curve monitoring for type-Ia SNe in rest-frame infrared wavelength is also conducted, which is another main science
goal of the mission. During the in-orbit 5 years observations, we expect to detect and monitor <2000 type-Ia SNe up to
z~2. WISH also conducts Ultra Wide Survey, covering 1000deg2 down to 24-25AB mag as well as Extreme Survey,
covering a limited number of fields of view down to 29-30AB mag. We here report the progress of the WISH project
including the basic telescope and satellite design as well as the results of the test for a proto-model of the flip-type filter
exchanger which works robustly near 100K.
We present the overview and the current status of SPICA (Space Infrared Telescope for Cosmology and Astrophysics),
which is a mission optimized for mid- and far-infrared astronomy with a cryogenically cooled 3.2 m telescope. SPICA
has high spatial resolution and unprecedented sensitivity in the mid- and far-infrared, which will enable us to address a
number of key problems in present-day astronomy, ranging from the star-formation history of the universe to the
formation of planets. To reduce the mass of the whole mission, SPICA will be launched at ambient temperature and
cooled down on orbit by mechanical coolers on board with an efficient radiative cooling system, a combination of which
allows us to have a 3-m class cooled (6 K) telescope in space with moderate total weight (3.7t). SPICA is proposed as a
Japanese-led mission together with extensive international collaboration. ESA's contribution to SPICA has been studied
under the framework of the ESA Cosmic Vision. The consortium led by SRON is in charge of a key focal plane
instrument SAFARI (SPICA Far-Infrared Instrument). Korea and Taiwan are also important partners for SPICA. US
participation to SPICA is under discussion. The SPICA project is now in the "risk mitigation phase". The target launch
year of SPICA is 2022.
Mid-infrared Camera and Spectrometer (MCS) is one of focal plane instruments for SPICA (Space Infrared
Telescope for Cosmology and Astrophysics), which have 3 m class 6 K cooled telescope. MCS will provide wide
field imaging and low-, medium-, and high-resolution spectroscopic observing capabilities with 7 detectors in the
wavelength range from 5 to 38 micron. Large format array detectors are required in order to realize wide field of
view in imaging and wide spectral coverage in spectroscopy. We are planning to cover the wavelength range of
5-26 micron by Si:As IBC 2K x 2K and 20-38 micron by Si:Sb BIB 1K x 1K. The development status and their
design including the electrical and thermal design are described.
We have been developing an immersion grating for high-resolution spectroscopy in the mid-infrared (MIR)
wavelength region. A MIR (12-18 µm) high-resolution (R = 20,000-30,000) spectrograph with the immersion
grating is proposed for SPICA, Japanese next-generation space telescope. The instrument will be the world's first
high-resolution spectrograph in space, and it would make great impacts on infrared astronomy. To realize a high-efficiency immersion grating, optical properties and machinability of bulk materials are the critical issues. There
are three candidate materials with good MIR transmittance; CdTe (n = 2.65), CdZnTe (n = 2.65), and KRS5 (n
= 2.30). From measurements of transmittance with FTIR and of homogeneity with phase-shifting interferometry
at 1.55 μm, we confirmed that CdZnTe is the best material that satisfies all the optical requirements. As for
machinability, by applying Canon's diamond cutting (planing) technique, fine grooves that meet our requirement
were successfully cut on flats for all the materials. We also managed to fabricate a small CdZnTe immersion
grating, which shows a high grating efficiency from the air. For the reflective metal coating, we tried Au (with
thin underlying layer of Cr) and Al on CdZnTe flats both by sputter deposition and vapor deposition. All samples
are found to be robust under 77 K and some of them achieve required reflectivity. Despite several remaining
technical issues, the fabrication of CdZnTe immersion grating appears to be sound.
LiteBIRD [Lite (Light) satellite for the studies of B-mode polarization and Inflation from cosmic background
Radiation Detection] is a small satellite to map the polarization of the cosmic microwave background (CMB)
radiation over the full sky at large angular scales with unprecedented precision. Cosmological inflation, which
is the leading hypothesis to resolve the problems in the Big Bang theory, predicts that primordial gravitational
waves were created during the inflationary era. Measurements of polarization of the CMB radiation are known as
the best probe to detect the primordial gravitational waves. The LiteBIRD working group is authorized by the
Japanese Steering Committee for Space Science (SCSS) and is supported by JAXA. It has more than 50 members
from Japan, USA and Canada. The scientific objective of LiteBIRD is to test all the representative inflation models that satisfy single-field slow-roll conditions and lie in the large-field regime. To this end, the requirement
on the precision of the tensor-to-scalar ratio, r, at LiteBIRD is equal to or less than 0.001. Our baseline design
adopts an array of multi-chroic superconducting polarimeters that are read out with high multiplexing factors in
the frequency domain for a compact focal plane. The required sensitivity of 1.8μKarcmin is achieved with 2000
TES bolometers at 100mK. The cryogenic system is based on the Stirling/JT technology developed for SPICA,
and the continuous ADR system shares the design with future X-ray satellites.
We have investigated the on-orbit properties of the spectroscopic data taken with NIR channel of the
Infrared Camera (IRC) onboard AKARI during the phases 1, 2 and 3. We have determined the boundary
shape of the aperture mask of NIR channel by using the spectroscopic data of uniform zodiacal
background emission. The information on the aperture mask shape is indispensable in modeling and
subtracting the spectroscopic background patterns made by the diffuse background emission such as
zodiacal emission and the Galactic cirrus emission. We also have examined the wavelength dependency
on the profile of the point spread function and its effect on the spectroscopic data. The obtained
information is useful, for example, in reducing the spectroscopic data of a point source badly affected by
bad pixels and in decomposing the overlapping spectra of sources that are aligned in the dispersion
direction with a small offset the cross dispersion direction. In this paper, we summarize the
supplementary knowledge that will be useful for the advanced data reduction procedures of NIR
spectroscopic datasets.
We present the current status of the development of the SPICA Coronagraph Instrument (SCI). SPICA is a next-generation
3-meter class infrared telescope, which will be launched in 2022. SCI is high-contrast imaging, spectroscopic
instrument mainly for direct detection and spectroscopy of extra-solar planets in the near-to-mid infrared wavelengths to
characterize their atmospheres, physical parameters and evolutionary scenarios. SCI is now under the international
review process. In this paper, we present a science case of SCI. The main targets of SCI, not only for direct imaging but
also for spectroscopy, are young to matured giant planets. We will also show that some of known exoplanets by ground-based
direct detection are good targets for SCI, and a number of direct detection planets that are suitable for SCI will be
significantly increased in the next decade. Second, a general design of SCI and a key technology including a new high-throughput
binary mask coronagraph, will be presented. Furthermore, we will show that SCI is potentially capable of
achieving 10-6 contrast by a PSF subtraction method, even with a telescope pointing error. This contrast enhancement
will be important to characterize low-mass and cool planets.
The Safari instrument on the Japanese SPICA mission is a zodiacal background limited imaging spectrometer offering a
photometric imaging (R ≈ 2), and a low (R = 100) and medium spectral resolution (R = 2000 at 100 μm) spectroscopy
mode in three photometric bands covering the 34-210 μm wavelength range. The instrument utilizes Nyquist sampled
filled arrays of very sensitive TES detectors providing a 2’x2’ instantaneous field of view. The all-reflective optical
system of Safari is highly modular and consists of an input optics module containing the entrance shutter, a calibration
source and a pair of filter wheels, followed by an interferometer and finally the camera bay optics accommodating the
focal-plane arrays. The optical design is largely driven and constrained by volume inviting for a compact three-dimensional
arrangement of the interferometer and camera bay optics without compromising the optical performance
requirements associated with a diffraction- and background-limited spectroscopic imaging instrument. Central to the
optics we present a flexible and compact non-polarizing Mach-Zehnder interferometer layout, with dual input and output
ports, employing a novel FTS scan mechanism based on magnetic bearings and a linear motor. In this paper we discuss
the conceptual design of the focal-plane optics and describe how we implement the optical instrument functions, define
the photometric bands, deal with straylight control, diffraction and thermal emission in the long-wavelength limit and
interface to the large-format FPA arrays at one end and the SPICA telescope assembly at the other end.
This paper presents the results of a laboratory experiment on a new free-standing pupil mask coronagraph for the direct
observation of exoplanets. We focused on a binary-shaped pupil coronagraph, which is planned for installation in the
next-generation infrared space telescope SPICA. Our laboratory experiments on the coronagraph were implemented
inside a vacuum chamber (HOCT) to achieve greater thermal stability and to avoid air turbulence, and a contrast of
1.3×10-9 was achieved with PSF subtraction. We also carried out multi-color/broadband experiments to demonstrate that
the pupil mask coronagraph works, in principle, at all wavelengths. We had previously manufactured a checker-board
mask, a type of binary-shaped pupil mask, on a glass substrate, which had the disadvantages of light loss by transmission,
ghosting from residual reflectance and a slightly different refractive index for each wavelength. Therefore, we developed
a new free-standing mask in sheet metal, for which no substrate was needed. As a result of a He-Ne laser experiment
with the free-standing mask, a contrast of 1.0×10−7 was achieved for the raw coronagraphic image. We also conducted
rotated mask subtractions and numerical simulations of some errors in the mask shape and WFEs. Speckles are the major
limiting factor. The free-standing mask exhibited about the same ability to improve contrast as the substrate mask.
Consequently, the results of this study suggest that the binary-shaped pupil mask coronagraph can be applied to
coronagraphic observations by SPICA and other telescopes.
The conceptual design of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) has been studied as a
pre-project of the Japan Aerospace Exploration Agency (JAXA) in collaboration with ESA to be launched in 2018. The
SPICA is transferred into a halo orbit around the second Lagrangian point in the Sun-Earth system, where radiant
cooling is available effectively. The SPICA has a large IR telescope 3 m in diameter, which is cooled without cryogen to
below 6 K by the radiant and mechanical cooling system. Therefore, the SPICA mission will cover mid- and far-IR
astronomy with high sensitivity and spatial resolution during a long period of over 5 years for goal. Most heat radiation
from the sun and spacecraft is blocked by the Sun Shield and thermal radiation shields covered with Multi-Layer
Insulator (MLI) to limit heat radiation to the Scientific Instrument Assembly (SIA). The SIA, which is composed of the
primary mirrors and optical benches equipped with Focal Plane Instruments (FPIs), is refrigerated to below 6 K by two
sets of 4K-class Joule-Thomson (JT) cooler with a cooling power of 40 mW at 4.5 K. The Far-IR detector is refrigerated
to 1.7 K by two sets of 1K-class JT coolers with a cooling power of 10 mW at 1.7 K. Improvements for the higher
reliability and sufficient cooling performance are required in the development of SPICA mechanical cryocoolers.
Thermal analysis indicates that the SPICA cryogenic system works effectively to limit the total heat load on the SIA to
41.2 mW. This paper describes the conceptual design of the SPICA cryogenic system, which was established with
thermal feasibility for nominal operation mode.
The SPICA mission aims to achieve high spatial resolution and unprecedented sensitivity in the mid to farinfrared
wavelength astronomy. We derived a set of pointing requirements from SPICA's mission requirements.
Disturbance management over the SPICA system and an implementation of isolators are necessary, because
cryogenic coolers' disturbances could generate vibration. Alignment and random pointing errors for focal-plane
instruments are reduced with a focal-plane guidance camera. Furthermore, an additional focal-plane camera and
a tip-tilt mirror actuator are installed for coronagraph mode. This paper presents an overview of the SPICA
pointing requirements and a feasibility study to achieve the requirements.
KEYWORDS: Galactic astronomy, Space telescopes, Telescopes, Mirrors, Near infrared, Optical filters, Staring arrays, Ultraviolet radiation, James Webb Space Telescope, Sensors
WISH is a new space science mission concept whose primary goal is to study the first galaxies in the early universe.
We will launch a 1.5m telescope equipped with 1000 arcmin2 wide-field NIR camera by late 2010's in order to conduct
unique ultra-deep and wide-area sky surveys at 1-5 micron. The primary science goal of WISH mission is pushing the
high-redshift frontier beyond the epoch of reionization by utilizing its unique imaging capability and the dedicated
survey strategy. We expect to detect ~104 galaxies at z=8-9, ~3-6x103 galaxies at z=11-12, and ~50-100 galaxies at
z=14-17 within about 5 years of the planned mission life time. It is worth mentioning that a large fraction of these
objects may be bright enough for the spectroscopic observations with the extremely large telescopes. By adopting the optimized strategy for the recurrent observations to reach the depth, we also use the surveys to detect transient objects.
Type Ia Supernova cosmology is thus another important primary goal of WISH. A unique optical layout has been
developed to achieve the diffraction-limited imaging at 1-5micron over the required large area. Cooling the mirror and
telescope to ~100K is needed to achieve the zodiacal light limited imaging and WISH will achieve the required
temperature by passive cooling in the stable thermal environment at the orbit near Sun-Earth L2. We are conducting the
conceptual studies and development for the important components of WISH including the exchange mechanism for the
wide-field filters as well as the primary mirror fixation.
SPICA is a next generation infrared astronomy mission to reveal the origin of planets and galaxies. The mission is led by
Japan Aerospace Exploration Agency (JAXA) in collaboration with the European Space Agency (ESA) and international
consortiums in Japan, Europe, USA, and the Republic of Korea. SPICA is an "observatory" based on the heritage of
AKARI's "all sky survey". ESA provides a 3-m class telescope using technology heritage of Herschel. The SPICA will
achieve superior sensitivity in the mid- to far- infrared astronomy to be launched into space. SPICA has a completely
new cooling system, which utilizes efficient mechanical coolers. This system enables a large, cryogenically cooled
telescope in space. SPICA system concept and requirements are clear, but it is not easy to design. SPICA spacecraft
consists of the Payload Module (PLM) and the Bus Module (BM). The PLM includes mechanical coolers and passive
thermal shields, which enable to cool down the telescope and scientific instruments below 6K. The PLM is connected to
the BM with low thermal conductivity truss structure to keep the PLM cool and the BM warm. This paper describes how
to meet the system requirements to establish the feasible design of SPICA spacecraft.
KEYWORDS: Near infrared, Spectroscopy, Sensors, Telescopes, Space telescopes, Near infrared spectroscopy, James Webb Space Telescope, Prisms, Astronomy, Cryocoolers
AKARI, the Japanese satellite mission dedicated for infrared astronomy launched in 2006 February, exhausted its 180
litter liquid helium (LHe) in 2007 August. After the LHe exhaustion, the telescope and focal plane of AKARI have still
been kept less than 50K by the onboard cryocooler and near-infrared (NIR) observations with the Infrared Camera (IRC)
are continuing. The data reduction software optimized for the warm mission enables us to carry out efficient and
sensitive observations in the NIR despite the increase of hot pixels. In particular, the NIR spectroscopic capability of
the IRC provides a unique opportunity to obtain spectra in 2.5-5μm with a high sensitivity, which will not be able to be
carried out with any other facilities until JWST. An overview of the AKARI warm mission is given together with the
performance and some observational results taken during the warm mission.
Z-Spec is a cryogenic, broadband, millimeter-wave grating spectrometer. It is capable of obtaining many
spectral lines simultaneously because of its unprecedented broad bandwidth (185-305GHz). The bandpass covers the
1mm atmospheric transmission window with a resolving power of 250-400. Z-Spec uses 160 silicon nitride micromesh
bolometers cooled down to less than 100mK for background-limited performance. The unique capability of Z-Spec to
detect multiple lines simultaneously allows us to obtain information efficiently on the physical and chemical conditions
of nearby Ultra-luminous Infrared Galaxies (ULIRGs) powered by starbursts or Active Galactic Nuclei. Here we report
on new millimeter-wave broadband data for ULIRGs acquired with Z-Spec and the noise performance and achieved
sensitivity in observations with the CSO. We found that during the observations the noise scales with the atmospheric
opacity and can be explained well by our sensitivity model, considering the photon noise originating from the sky and
the telescope, as well as the detector and electronics noise. The photon noise is found to dominate the total noise.
The Japanese led Space Infrared telescope for Cosmology and Astrophysics (SPICA) will observe the universe over the
5 to 210 micron band with unprecedented sensitivity owing to its cold (~5 K) 3.5m telescope. The scientific case for a
European involvement in the SPICA mission has been accepted by the ESA advisory structure and a European
contribution to SPICA is undergoing an assessment study as a Mission of Opportunity within the ESA Cosmic Vision
1015-2015 science mission programme. In this paper we describe the elements that are being studied for provision by
Europe for the SPICA mission. These entail ESA directly providing the cryogenic telescope and ground segment
support and a consortium of European insitutes providing a Far Infrared focal plane instrument. In this paper we
describe the status of the ESA study and the design status of the FIR focal plane instrument.
We present a preliminary optical design and layout for the mid-infrared (4-18 μm) high-resolution spectrograph for
SPICA, Japanese next-generation space IR observatory with 3.5 m telescope. MIR high-resolution spectroscopy
is a powerful probe to study gas-phase molecules/atoms in a variety of astronomical objects. Space observation
provides a great opportunity to study many molecular lines especially in between the atmospheric windows.
SPICA gives us a chance to realize MIR high-resolution spectroscopy from space with the large telescope aperture.
The major technical challenge is the size of the spectrograph, which tends to be too large for space. We hope to
overcome this problem with a novel MIR immersion grating, which can make the instrument smaller by a factor
of the refractive index of the grating material. We plan to fabricate a large pitch ZnSe (n = 2.4) immersion
grating with the fly-cutting technique at LLNL (see Poster paper 7018-183 by Ikeda et al.1 and 7018-181 by
Kuzmenko et al.2 in the proceedings of this conference). We show our preliminary spectrograph designs with
a spectral resolution of ~30,000 in 4-8 μm (short mode) and 12-18 μm (long mode). The instrument size can
be as small as 200 × 400 mm thanks to the MIR immersion gratings. With unprecedented spectral resolution
in space, which is 10-times higher than ISO-SWS, the high-resolution spectrograph for SPICA (SPICA-HIRES)
could be a unique instrument that can provide most sensitive and clear spectra of this kind.
The SPICA, Japanese next generation infrared space telescope with a cooled 3.5 m primary mirror, will be a quite unique
observatory in the mid and far-infrared with unprecedented sensitivity and the spatial resolving power. Here we briefly
describe the key scientific objectives which can be performed only with SPICA, based on its unique design concepts. We
then describe the scientific requirements for the focal plane instruments, and summarize the constraints on the various
resources available for the focal plane instruments, derived from the spacecraft system design. We also outline the
concept of the planned focal plane instruments, and the future development plan.
Within the focal-plane instrument space (2.5m diameter, 0.5m height), two major instruments are so far planned to be
equipped: one is a mid-infrared instrument, consisting of a mid-infrared camera, mid-infrared spectrometers, and a midinfrared
coronagraph, while the another is a far-infrared camera and spectrometer. The mid-infrared camera will consist
of four channels covering 5-38 μm with approximately 25-40 square arcminutes, while the mid-infrared spectrometer
will have high-dispersion (R=30000) channels at 4-18 μm and moderate-dispersion (R=3000) channels at 16-38 μm.
The mid-infrared coronagraph will have both imaging and spectroscopic capability at 5-27 μm, with the contrast higher
than 10-6. As for the far-infrared camera and spectrometer, a Fourier-type imaging spectrometer covering 30-210 μm is
proposed and extensively studied by the European consortium (SAFARI consortium). A far-infrared and sub-millimeter
grating spectrometer instrument is also under consideration by the US SPICA team.
The AKARI, Japanese infrared astronomical satellite, is a 68.5 cm cooled telescope with two focal-plane instruments
providing continuous sky scan at six wavelength bands in mid- and far-infrared. The instruments also have capabilities of
imaging and spectroscopy in the wavelength range 2-180 μm in the pointing observations occasionally inserted into the
continuous survey. AKARI was launched on 21st Feb. 2006, and has performed the all-sky survey as well as 5380
pointing observations until the liquid helium exhaustion on 26th Aug. 2007. The all sky survey covers more than 90
percent of the entire sky with higher spatial resolutions and sensitivities than the IRAS. First version of the infrared
source catalogue will be released in 2009. Here we report the overview of the mission, highlights on the scientific results
as well as the performance of the focal-plane instruments. We also present the observation plan with the near infrared
camera during the post-helium mission phase started in June 2008.
Infrared Camera (IRC) onboard AKARI satellite has carried out more than 4000 pointed observations during the phases
1 and 2, a significant amount of which were performed in the spectroscopic mode. In this paper, we investigate the
properties of the spectroscopic data taken with MIR-S channel and propose a new data reduction procedure for slit-less
spectroscopy of sources embedded in complicated diffuse background structures. The relative strengths of the 0th to 1st
order light as well as the efficiency profiles of the 2nd order light are examined for various objects taken with MIR-S
dispersers. The boundary shapes of the aperture mask are determined by using the spectroscopic data of uniform zodiacal
emission. Based on these results, if the appropriate template spectra of zodiacal light emission and the diffuse
background emission are prepared and the geometries of the diffuse structures are obtained by the imaging data, we can
reproduce the slit-less spectroscopic patterns made by a uniform zodiacal emission and the diffuse background emission
by a convolution of those template profiles. This technique enables us to obtain the spectra of infrared sources in highly
complicated diffuse background and/or foreground structures, such as in the Galactic plane and in nearby galaxies.
AKARI is the first Japanese astronomical infrared satellite mission orbiting around the Earth in a sun-synchronous
polar orbit at the altitude of 700 km. One of the major observation programs of the AKARI is an all-sky survey in the
mid- to far-infrared spectral regions with 6 photometric bands. The mid-infrared part of the AKARI All-Sky Survey was
carried out with the Infrared Camera (IRC) at the 9 and 18 µm bands with the sensitivity of about 50 and 120 mJy (5σ
per scan), respectively. The spatial resolution is about 9.4" at both bands. AKARI mid-infrared (MIR) all-sky survey
substantially improves the MIR dataset of the IRAS survey of two decades ago and provides a significant database for
studies of various fields of astronomy ranging from star-formation and debris disk systems to cosmology. This paper
describes the current status of the data reduction and the characteristics of the AKARI MIR all-sky survey data.
The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI satellite. It is designed for
wide-field deep imaging and low-resolution spectroscopy in the near- to mid-infrared (1.8-26.5 micron) in the
pointed observation mode of AKARI. The IRC is also operated in the survey mode to make an All-Sky Survey
at 9 and 18 microns. The IRC is composed of three channels. The NIR channel (1.8-5.5 micron) employs
a 512x412 InSb photodiode array, whereas both the MIR-S (4.6-13.4 micron) and MIR-L (12.6-26.5 micron)
channels use 256x256 Si:As impurity band conduction (IBC) arrays. Each of the three channels has a field-ofview
of approximately 10x10 arcmin., and they are operated simultaneously. The NIR and MIR-S channels share
the same field-of-view by virtue of a beam splitter. The MIR-L observes the sky about 25 arcmin. away from the
NIR/MIR-S field-of-view. The in-flight performance of the IRC has been confirmed to be in agreement with the
pre-flight expectation. More than 4000 pointed observations dedicated for the IRC are successfully completed,
and more than 90% of the sky are covered by the all-sky survey before the exhaustion of the Akari's cryogen. The
focal-plane instruments are currently cooled by the mechanical cooler and only the NIR channel is still working
properly. Brief introduction, in-flight performance and scientific highlights from the IRC cool mission, together
with the result of performance test in the warm mission, are presented.
KEYWORDS: Mirrors, Space telescopes, Telescopes, Silicon carbide, Cryogenics, Infrared telescopes, James Webb Space Telescope, Space mirrors, Composites, Astronomy
SPICA (Space Infrared Telescope for Cosmology and Astrophysics) is a Japanese astronomical infrared satellite project
with a 3.5-m telescope. The target year for launch is 2017. The telescope is cooled down to 4.5 K in space by a
combination of newly-developed mechanical coolers with an efficient radiative cooling system at the L2 point. The
SPICA telescope has requirements for its total weight to be lighter than 700 kg and for the imaging performance to be
diffraction-limited at 5 μm at 4.5 K. Material for the SPICA telescope mirrors is silicon carbide (SiC). Among various
types of SiC, primary candidates comprise normally-sintered SiC, reaction-sintered SiC, and carbon-fiber-reinforced
SiC; the latter two have been being developed in Japan. This paper reports the current design and status of the SPICA
telescope along with our recent activities on the cryogenic optical testing of SiC and C/SiC composite mirrors, including
the development of an innovative support mechanism for cryogenic mirrors, which are based on lessons learned from a
SiC 70 cm telescope onboard the previous Japanese infrared astronomical mission AKARI.
We build a refractometer capable of measuring refractive indices at low temperatures from visible to near-infrared wavelength. Refractive indices of 20 optical materials (three fluorides, 15 glasses, fused silica, and KRS-5) are measured at wavelengths of 365.0, 435.8, 546.1, 1014.0, 1529.6, 2122, and 3298 nm at temperatures of ~80, 120, 180, 240, and 293 K. The temperature dependences of the refractive indices are shown in a table and figures.
We report on the status of Z-Spec, including preliminary results of our first astronomical measurements. Z-Spec is a cryogenic, broadband, millimeter-wave grating spectrometer designed for molecular line surveys of galaxies, including carbon monoxide redshift measurements of high-redshift submillimeter sources. With an instantaneous bandwidth of 185-305 GHz, Z-Spec covers the entire 1 mm atmospheric transmission window with a resolving power of 200-400. The spectrometer employs the Waveguide Far-Infrared Spectrometer (WaFIRS) architecture, in which the light propagation is confined within a parallel-plate waveguide, resulting in a minimum mechanical envelope. Its array of 160 silicon-nitride micromesh bolometers is cooled to below 100 mK for background-limited performance. With its sensitivity, broad bandwidth, and compactness, Z-Spec serves as a prototype for a future far-IR spectrometer aboard a cold telescope in space. Z-Spec successfully demonstrated functionality with a partial array of detectors and warm electronics during a week-long engineering run at the Caltech Submillimeter Observatory in June, 2005. We describe the instrument performance evaluated at the telescope and in subsequent laboratory tests and compare these results with design specifications. Following several modifications we returned to the telescope in April, 2006. We present a preliminary astronomical spectrum and discuss our plans to improve sensitivity and throughput to achieve our ultimate science goals.
We introduce a Japanese plan of infrared(z-band:0.9μm) space astrometry(JASMINE-project). JASMINE is
the satellite (Japan Astrometry Satellite Mission for INfrared Exploration) which will measure distances and
apparent motions of stars around the center of the Milky Way with yet unprecedented precision. It will measure
parallaxes, positions with the accuracy of 10 micro-arcsec and proper motions with the accuracy of ~ 4microarcsec/
year for stars brighter than z=14mag. JASMINE can observe about ten million stars belonging to the
bulge components of our Galaxy, which are hidden by the interstellar dust extinction in optical bands. Number of
stars with σ/π < 0.1 in the direction of the Galactic central bulge is about 1000 times larger than those observed
in optical bands, where π is a parallax and σ is an error of the parallax. With the completely new "map of the
bulge in the Milky Way", it is expected that many new exciting scientific results will be obtained in various fields
of astronomy. Presently, JASMINE is in a development phase, with a target launch date around 2015. We adopt
the following instrument design of JASMINE in order to get the accurate positions of many stars. A 3-mirrors
optical system(modified Korsch system)with a primary mirror of~
0.85m is one of the candidate for the optical
system. On the astro-focal plane, we put dozens of new type of CCDs for z-band to get a wide field of view. The
accurate measurements of the astrometric parameters requires the instrument line-of-sight highly stability and
the opto-mechanical highly stability of the payload in the JASMINE spacecraft. The consideration of overall
system(bus) design is now going on in cooperation with Japan Aerospace Exploration Agency(JAXA).
KEYWORDS: Space telescopes, Telescopes, Mirrors, Silicon carbide, Infrared telescopes, Cryogenics, James Webb Space Telescope, Optical instrument design, Silicon, Far infrared
The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission is the third Japanese astronomical infrared satellite project of a 3.5m cooled telescope optimized for mid- to far-infrared observations, following the Infrared Telescope in Space (IRTS) and the ASTRO-F missions. It will employ mechanical coolers and an efficient radiative cooling system, which allow us to have a cooled (4.5K) telescope of the aperture much larger than previous missions in space. The SPICA will attack a number of key problems in present-day astrophysics, ranging from the origin of the universe to the formation of planetary systems, owing to its high spatial resolution and unprecedented sensitivity in the mid- to far-infrared. The large aperture size for cryogenically use is, however, a great challenge and demands substantial technology developments for the telescope system. We adopt monolithic mirror design in the baseline model because of the technical feasibility and reliability. We set the optical performance requirement as being diffraction limited at 5μm at the operating temperature of 4.5K. The total weight attributed to the telescope system is 700kg, which requires a very light 3.5m primary mirror together with the mirror support structure. At present we are working on two candidate materials for the SPICA telescope: silicon carbide (SiC) and carbon-fiber reinforced silicon carbide (C/SiC). This presentation gives a general overview of the SPICA mission and reports the current design and status of the SPICA telescope system, including recent progress of the development of C/SiC mirrors.
The MIR-L is the mid-IR (12-26 μm) instrument for Japanese infrared astronomical satellite, the ASTRO-F. The instrument has 2 observing modes: a wide field imaging mode with a field of view of 10.7 × 10.2 arcmin2 and a low resolution spectroscopic mode with a spectral resolution R = λ/Δλ about 20. The spectroscopic mode provides with not only slit-spectroscopy for extended sources but also slitless-spectroscopy for point sources. We describe here the design, manufacturing, and performance evaluation of the cryogenic optical system of the MIR-L. The concept of the optical system design is to realize wide field observations with a compact size. The instrument employs a refractive optics of 5 lenses (CsI - CsI - KRS-5 - CsI - KRS-5) with a 256×256 pixel Si:As IBC array detector, 3 filters, and 2 grisms. The refractive indices of CsI and KRS-5 at the operating temperature of about 6 K have ambiguities because of the difficulty of the measurements. We therefore designed the MIR-L optics with tolerances for the uncertainties of the indices. Since both CsI and KRS-5 have the fragility and the large thermal expansion, we designed a specialized mounting architecture to prevent from making damages and/or decentrations of the lenses at cryogenic temperatures under the serious vibration during the launch. As a result, the optical system of the MIR-L has passed both vibration and thermal cycle tests without damage and performance degradation, and achieved diffraction limited performance over its full wavelength range at the operating temperature.
The ASTRO-F is an on-going infrared satellite mission covering 2-200 μm infrared wavelengths. Not only the all-sky survey in the mid-IR and far-IR, but also deep pointing observations are planned especially at 2-26 μm. In this paper, we focus on the near-infrared (NIR) channel of the infrared camera (IRC) on board ASTRO-F, and describe its design, and results of the imaging mode performance evaluation as a single component. The NIR consists of 4 lenses (Silicon - Silicon - Germanium - Silicon) with a 412 * 512 In:Sb detector. Three broad-band filters, and two spectroscopic elements are installed covering 2-5 μm wavelengths. Since the ASTRO-F telescope and the focal plane are cooled to 6 K, the evaluation of adjustment of the focus and the end-to-end test of the whole NIR camera assembly have to be done at cryogenic temperature. As a result of measurements, we found that the transverse magnification and distortion are well matched with the specification value (1 versus 1.017 and 1 %), while the chromatic aberration, point spread function, and encircled energy are slightly degraded from the specification (300 μm from 88 μm, > 1pixel from ~ 1pixel, 80 % encircled energy radius > 1pixel from ~ 1pixel). However, with these three measured values, in-flight simulations show the same quality as specification without degradation. In addition to the image quality, we also verified the ghost image generated from the optical element (1 % energy fraction to the original image) and the slightly narrowed field of view (10' * 9.5' from 10' * 10'). For the responsivity, the NIR shows expected response. Totally, the NIR imaging mode shows satisfactory results for the expected in-flight performance.
The Infrared Camera (IRC) is one of the focal-plane instruments on board the Japanese infrared astronomical space mission ASTRO-F. It will make wide-field deep imaging and low-resolution spectroscopic observations over a wide spectral range in the near- to mid-infrared (2-26um) in the pointed observation mode of the ASTRO-F. The IRC will also be operated in the survey mode and make an all-sky survey at mid-infrared wavelengths. It comprises three channels. The NIR channel (2-5um) employs a 512x412 InSb array, whereas both the MIR-S (5-12um) and the MIR-L (12-26um) channels use 256x256 Si:As impurity band conduction (IBC) arrays. The three channels will be operated simultaneously. All the channels have 10'x10' fields of view with nearly diffraction-limited spatial resolutions. The NIR and MIR-S share the same field of view, while the MIR-L will observe the sky about 25' away from the NIR/MIR-S field of view. The IRC will give us deep insights into the formation and evolution of galaxies, the properties of brown dwarfs, the evolution of planetary disks, the process of star-formation, the properties of the interstellar medium under various physical environments, as well as the nature and evolution of solar system objects. This paper summarizes the latest laboratory measurements as well as the expected performance of the IRC.
An all-sky survey in two mid-infrared bands which cover wavelengths of 5-12um and 12-26μm with a spatial resolution of ~9" is planned to be performed with the Infrared Camera (IRC) on board the ASTRO-F infrared astronomical satellite. The expected detection limits for point sources are few tens mJy. The all-sky survey will provide the data with sensitivities more than one order of magnitude deeper and with spatial resolutions an order of magnitude higher than the Infrared Astronomical Satellite (IRAS) survey.
The IRC is optimally designed for deep imaging in pointing observations. It employs 256x256 Si:As IBC infrared focal plane arrays (FPA) for the two mid-infrared channels. In order to make observations with the IRC during the survey mode of the ASTRO-F, a new operation method for the arrays has been developed - the scan mode operation. In the scan mode, only 256 pixels in a single row aligned in the cross-scan direction on the array are used as the scan detector and sampled every 44ms. Special cares have been made to stabilize the temperature of the array in the scan mode, which enables to achieve a low readout noise compatible with the imaging mode (~30 e-). The flux calibration method in the scan mode observation is also investigated. The performance of scan mode observations has been examined in computer simulations as well as
in laboratory simulations by using the flight model camera and moving artificial point sources. In this paper we present the scan mode operation method of the array, the results of laboratory performance tests, the results of the computer simulation, and the expected performance of the IRC all-sky survey observations.
MIR-L is a 12-26μm channel of Infrared Camera(IRC) onboard ASTRO-F. The camera employs a refractive optics which consists of 5 lenses (CsI - CsI - KRS-5 - CsI - KRS-5) and a large format Si:As IBC array detector (256 x 256 pixels). The design concept is to realize a wide field of view with a compact size. It has 2 observing modes: a wide field imaging with a field of view of 10.7 x 10.2arcmin2 or a pixel resolution of 2.5 x 2.4arcsec2/pixel in 3 bands (12.5-18μm, 14-26μm, 22-26μm), and low resolution spectroscopy with a spectral resolution R = λ/Δλ
≈40 in 2 bands 11-19μm,18-26μm). It also has a small slit to adapt for spectroscopic observations of extended sources. We describe the current design of the optics and the mounting architecture of MIR-L and evaluation of the optical performance at cryogenic temperatures.
The SPICA (Space Infrared Telescope for Cosmology and Astrophysics), which is a Japanese astronomical infrared satellite project with a 3.5-m telescope, is scheduled for launch in early 2010s. The telescope is cooled down to 4.5 K in space by a combination of mechanical coolers with an efficient radiative cooling system. The SPICA telescope has requirements for its total weight to be lighter than 700 kg and for the imaging performance to be diffraction-limited at 5 µm at 4.5 K. Two candidate materials, silicon carbide (SiC) and carbon-fiber-reinforced SiC (C/SiC composite), are currently under investigation for the primary mirror. A monolithic mirror design will be adopted in both cases because of the technical feasibility and reliability. This paper reports the current design and status of the SPICA telescope together with some of our recent results on laboratory cryogenic tests for the SiC and C/SiC composite mirrors.
We present the design, integration, and first ryogenic testing of our new broad-band millimeter-wave spectrometer, Z-Spec. Z-Spec uses a novel architecture called WaFIRS (Waveguide Far-IR Spectrometer), which employs a curved diffraction grating in a parallel-plate waveguide propagation medium. The instrument will provide a resolving power betwee 200 and 350 across an instantaneous bandwidth of 190-310 GHz, all packaged within a cryostat that is of order 1 meter in size. For background-limited astronomical observations in the 1mm terrestrial window, Z-Spec uses 160 silicon nitride micro-mesh bolometers and the detectors and waveguide grating are cooled to ~0.1 K. Our first cryogenic measurements at 225 GHz show resolving power greater than 200, and the end-to-end throughput is estimated to be greater than 30%, possibly as high as 40%. Z-Spec represents the first systematic approach to cosmological redshift measurement that is not based on optical or near-IR identifications. With its good sensitivity and large bandwidth, Z-Spec provides a new capability for millimeter-wave astrophysics. The instrument will be capable of measureing rotational carbon monoxide line emission from bright dusty galaxies at redshifts of up to 4, and the broad bandwidth insures that at least two lines will be simultaneously detected, providing an unambiguous redshift determination. In addition to Z-Spec's observations over the next 1-3 years, the WaFIRS spectrometer architecture makes an excellent candidate for mid-IR to millimeter-wave spectrometers on future space-borned and suborbital platforms such as SPICA and SAFIR. The concept is dramatically more compact and lightweight than conventional free-space grating spectrometers, and no mirrors or lenses are used in the instrument. After the progress report on Z-Spec we highlight this capability.
We introduce a Japanese future plan of the IR space astrometry(JASMINE-project). JASMINE is an infrared(K-band) scanning astrometric satellite. JASMINE(I and/or II-project) is planned to be launched between 2013 and 2015 and will measure parallaxes, positions and proper motions with the precision of 10 microarcsec at K=12~14mag. JASMINE can observe about a few hundred million stars belonging to the disk and the bulge components of our Galaxy, which are hidden by the interstellar dust extinction in optical bands. Furthermore JASMINE will also measure the photometries of stars in K, J and H-bands. The main objective of JASMINE is to study the fundamental structure and evolution of the disk and the bulge components of the Milky Way Galaxy. Furthermore its important objective is to investigate stellar physics.
The Infrared Camera (IRC) is one of the focal-plane instruments on board ASTRO-F(Japanese Infrared Astronomical satellite to be launched in 2004). IRC will make imaging and spectroscopy observations in the near- and mid-infrared regions. IRC comprises of three channels; NIR, MIR-S and MIR-L, which cover 2-5, 5-12, and 12-26μm, respectively. In this paper we report the optical performance of the NIR imaging mode at cryogenic temperatures with three filters; N2, N3, and N4, which cover the wavelength regions of 2-2.7, 2.7-3.7, and 3.7-5.05μm, respectively. The NIR channel consists of three Si and one Ge lenses with the infrared array (412 x 512 format of InSb) manufactured by Raytheon IRO. At cryogenic temperatures (- 6K) we found slightly larger chromatic focal shifts than designed probably due to the uncertainty in low-temperature refractive indices of the lens materials. We obtained the modulation transfer function for each band by the knife-edge method and estimated the optical performance of the IRC with the telescope at cryogenic temperatures.
The discovery of galaxies beyond z~1 which emit the bulk of their luminosity at long wavelengths has demonstrated the need for high-sensitivity, broad-band spectroscopy in the far-IR/submm/mm bands. Because many of these sources are not detectable in the optical,
long-wavelength spectroscopy is key to measuring their redshifts and ISM conditions. The continuum source list will increase in the coming decade with new ground-based instruments (SCUBA2, Bolocam, MAMBO), and the surveys of HSO and SIRTF. Yet the planned spectroscopic capabilities lag behind, in part due to the difficulty in scaling existing IR spectrograph designs to longer wavelengths. To overcome these limitations, we are developing WaFIRS, a novel concept for long-wavelength spectroscopy which utilizes a parallel-plate waveguide and a curved diffraction grating. WaFIRS provides the large (~60%) instantaneous bandwidth and high throughput of a conventional grating system, but offers a dramatic reduction in volume and mass. WaFIRS requires no space overheads for extra optical
elements beyond the diffraction grating itself, and is two-dimensional because the propagation is confined between two parallel plates. Thus several modules could be stacked to multiplex either spatially or in different frequency bands. The size and mass savings provide opportunities for spectroscopy from space-borne observatories which would be impractical with traditional spectrographs. With background-limited detectors and a cooled 3.5 m telescope, the line sensitivity would be comparable to that of ALMA, with instantaneous broad-band coverage. We present the spectrometer concept, performance verification with a mm-wave prototype, and our progress toward a cryogenic astronomical instrument
The infrared camera(IRC) onboard ASTRO-F is designed for wide-field imaging and spectroscopic observations at near- and mid-infrared wavelengths. The IRC consists of three channels; NIR, MIR-S and MIR-L, each of which covers wavelengths of 2-5, 5-12 and 12-26 micron, respectively. All channels adopt compact refractive optical designs. Large format array detectors (InSb 512x412 and Si:As IBC 256x256) are employed. Each channel has 10x10 arcmin wide FOV with diffraction-limited angular resolution of the 67cm telescope of ASTRO-F at wavelengths over 5 micron. A 6-position filter wheel is placed at the
aperture stop in each channel, and has three band-pass filters, two grisms/prisms and a mask for dark current measurements. The 5 sigma sensitivity of one pointed observation is estimated to be 2, 11 and 62 micro-Jy at 4, 9, 20 micron bands, respectively. Because ASTRO-F is a low-earth orbiting satellite, the observing duration of each pointing is limited to 500 seconds. In addition to pointed observations, we plan to perform mid-infrared scanning observation.
Fabrications of the flight-model of NIR, MIR-S, and the warm electronics have been mostly completed, while that of MIR-L is underway. The performance evaluation of the IRC in the first end-to-end test (including the satellite system) is presented.
We report on the extensive tests to characterize the performance of the infrared detector arrays for the Infrared Camera (IRC) on board the next Japanese infrared astronomical satellite, ASTRO-F. The ASTRO-Fwill be launched early 2004 and the IRC is one of the focal plane instruments to make observations in 2-26μm. For the near-infrared observations of 2-5μm, a 512x412 InSb array will be employed, while two 256x256 Si:As arrays will be used for the observations of 5-26μum in the IRC. Both arrays are manufactured by Raytheon.
To maximize the advantage of the cooled telescope and extremely low background radiation conditions in space, the dark current and readout noise must be minimized. The heat dissipation of the arrays also has to be minimized. To meet these requirements and achieve the best performance of the arrays, we optimized the array driving clocks, the bias voltage, and the supply currents, and evaluated the temperature dependence of the performance. In particular, we found that the voltage between the gate and source of the FET of the multiplexer SBRC-189 had a strong dependence on temperature. This effect becomes a dominant source for the noise unless the temperature
is kept within 20mK. We have achieved the readout noises of about 30e- and 40e- with the correlated double sampling for the flight model readout circuits of the InSb and Si:As arrays, respectively. These noises ensure that the background-limited performance can be achieved for the observations of IRC in the 4-26μm range in the current observing scheme.
In addition, we are now planning to make scan mode observations by IRC. We have developed a new operation way of the arrays to achieve the stable response and low readout noise in the scanning operation for the first time.
The IRC is now installed in the flight model cryostat and the first
end-to-end test has just been completed. We report on the expected performance of the IRC together with the array test results.
Z-Spec is a broadband (195 - 310 GHz), direct-detection, millimeter-wave spectrometer with moderate resolution (R ~ 350) that we are building to observe CO rotational lines and atomic fine-structure lines in the recently discovered population of submillimeter galaxies. A large fraction of these sources cannot be identified optically and thus redshift determination is extremely difficult. The large instantaneous bandwidth of Z-Spec will allow measurement of redshifts up to z~4 via detection of two or more CO lines in a single spectrum. The spectrometer is based on a parallel-plate waveguide grating architecture that is substantially more compact than a conventional free-space grating system. The spectrometer and an array of 160 silicon nitride micromesh bolometers will be cooled to 100 mK to provide background-limited sensitivity. In addition to measuring the redshifts of sources discovered in submillimeter continuum surveys, Z-Spec will demonstrate a novel spectrometer concept well-suited for future far-infrared space missions.
The design overview and current development status of the Infrared Camera (IRC) onboard the Japanese infrared space mission, ASTRO-F (commonly called as the Infrared Imaging Surveyor, IRIS), are presented. The IRC is one of the focal plane instruments of ASTRO-F and will make imaging and low- resolution spectroscopy observations in the wide spectral range of the near- to mid-infrared of 2 - 26 micrometers . ASTRO-F will be brought into an IRAS-type sun-synchronous polar orbit. The IRC will be operated in the pointing mode, in which the telescope will be pointed at a fixed target position on the sky for about 10 minutes. The pointed observation may be scheduled up to three times per orbit. The IRC has three channels: NIR (2 - 5 micrometers ), MIR-S (5 - 12 micrometers ) and MIR-L (12 - 26 micrometers ). All of the three channels use refractive optics. Each channel has a field-of-view of 10' X 10' with nearly diffraction-limited spatial resolution. The NIR and MIR-S channels simultaneously observe the same field on the sky, while the MIR-L observes the sky about 20' away from the NIR/MIR-S position. State- of-the-art large format array detectors manufactured by Raytheon/IRCoE are employed for the IRC. The NIR channel uses a 512 X 412 InSb array, and 256 X 256 Si:As IBC arrays are used for the MIR channels. Fabrication of the proto-model has been completed and the preliminary performance test is under way.
Basic design and current development status of IRC, infrared camera on-board the IRIS is presented. IRC employs state-of- the-art format IR arrays for imaging and low-resolution spectroscopy at wavelength 2-25 micrometers . IRC consists of 3 cameras; NIR, MIR-S, and MIR-L. These 3 channels simultaneously observe different fields of the sky, with diffraction-limited spatial resolution.
We present a conceptual design of a future Japanese IR astronomical satellite: the HIII/L2 mission. We propose a 'warm launch' cooled telescope; the telescope is to be launched at ambient temperature and is to be cooled in orbit to 4.5K by a modest cryogenic cooler with the help of radiative cooling. Since liquid helium and hence a heavy vacuum vessel are not longer required, the warm launch design reduces the weight of the satellite dramatically. We propose to launch this satellite into a halo orbit around S- E L2, one of the Sun-Earth Lagrangian liberation points. The S-E L2 is an ideal orbit for IR astronomy, since (1) radiative cooling can become very effective, and (2) by the Japanese H-IIA launching vehicle. This mission focuses on high-resolution mid- to far-IR observations with unprecedented sensitivity, since the large aperture reduces confusion noise and the cooled optics suppresses instrumental background radiation. The HII/L2 mission is an ideal observatory-type platform to make follow-up observations to the ASTRO-F/IRIS survey mission. The target launch year is 2010.
Basic design and current development status of IRC: an IR camera on-board the IRIS is presented. IRC is one of the focal-plane instruments of the 70cm cooled telescope of the IRIS. IRC utilizes recently developed large-format IR arrays for imaging and low-resolution spectroscopy at wavelength 1.8-26 micrometers . IRC consist of 3 camera channels: NIR, MIR-S, and MIR-L. These 3 channels simultaneously observe different fields of the sky, with diffraction-limited spatial resolution. One critical component limiting the performance of the IRC is the performance of large-format arrays: 512 X 412 format InSb and 256 X 256 format Si:As IBC arrays operation at very low temperature. Performance test of the Si:As array manufactured by the Hughes/SBRC is under way, and the preliminary results is presented. Design of the camera optics and the optical components is also presented. IRC is operated under the pointing observation of about 500 sec exposure time, and the development goal is to achieve high point-source detectivity limited nearly by the confusion due to faint astronomical sources.
The far-infrared line mapper (FILM) is a far-infrared spectrometer and in one of four focal plane instruments of the infrared telescope in space (IRTS), FILM was designed for wide area intensity mapping of far-infrared emission from interstellar gas and dust in the galaxy. The targets are the [CII] 158 micrometer line of the ionized carbon, the [OI] 63 micrometer line of the oxygen atom, and the continuum emission at 155 and 160 micrometer from the interstellar dust grain. A cylindrically concave varied line-space grating and a linear array of stressed Ge:Ga were successfully developed and allowed us to make a compact spectrometer compatible to severe limitations of the small cryogenic telescope. The IRTS, onboard the space flyer unit (SFU), was launched by a HII rocket on March 18, 1995 and was recovered by a STS on January 13, 1996. The FILM worked very well during four weeks allocated for the IRTS observation and produced a lot of valuable data. The sensitivity and the spatial resolution for the [CII] line are an order of magnitude better than the previous work.
The Fabry-Perot spectrometer designed for NIR spectroscopic observations on the Balloon-borne Infrared Telescope (BIRT) is described in detail. Particular attention is given to the newly developed frequency switching method used in the BIRT, which is especially suitable for observations of spatially extended emission because the frequency switching mode does not require spacial chopping. Observations are described from two successful experiments conducted in 1988 using the Fabry-Perot spectrometer on the BIRT, in both the spatial chopping mode and the frequency switching mode.
The Japanese-made Balloon-borne Infrared Telescope (BIRT) designed for FIR astronomy is described. The BIRT system includes a 50-cm-diam telescope; an attitude-control system consisting of an attitude stabilization and a pointing and tracking subsystems; the ground support system consisting of four personal-computer systems; and electronics consisting of three small computer systems, servo circuits, power amplifiers, and other small circuits. Between 1985 and 1988, the BIRT has flown eight times, demonstrating that it is able to provide a suitable telescope observations on a stable platform with a long integration time. Structural diagrams of the BIRT overall system, the optical system, and the wobbling mechanism are presented along with a block diagram of the on-board electronics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.