We present an optical fiber receiver which includes a monolithically integrated PIN photodiode, a transimpedance amplifier, a decision circuit and a PECL compatible output driver. This low-cost and low-power receiver was fabricated in 0.6μm BiCMOS technology. Only one minor process modification was necessary to implement the PIN photodiodewith a diameter of 150μm. A minimum number of external components is needed for interfacing with standard PECL gates. At a maximum possible data rate of 625Mbit/s, a sensitivity of -22.7dBm was measured at an optical wavelength of 660nm. At a single-supply voltage of 5V, the power consumption of the complete receiver is less than 74mW. The overall chip size is 1763μm times 648μm.
Optoelectronic integrated circuits (OEICs) offering high bandwidth and high sensitivity as well are needed for the pickups of optical storage systems of the next generation, such as Blu-Ray or HDDVD. High bandwidth is necessary to enable high data transfer rates between the disk and the processing device, and high sensitivity allows to operate at low optical power and to deal with the lower efficiency of the photodiodes for blue light. Two methods will be presented to increase the bandwidth of the OEIC while maintaining high sensitivity. The first approach reduces the parasitic capacitance by placing the feedback resistor in a low-doped region. By this way the parasitic capacitance of the resistor is combined in series with the small depletion-layer capacitance of the low-doped region, which results in a drastically reduced effective capacitance. Using this method the 3dB-frequency of a standard one-stage transimpedance amplifier is increased by 55% from 67MHz to 104MHz. In the second approach the feedback resistor is replaced by a network that consists of two resistive voltage dividers that are coupled via a capacitor. Using such a capacitive-coupled voltage divider (CCVD) the feedback path is split into a low- and a high-frequency path and the effective band-limiting RC-constant is reduced. A bandwidth of 378MHz could be achieved. With a measured transimpedance of 212kΩ this results in a GBW of 80.3THzΩ.
The state of the art of silicon optoelectronic integrated circuits (OEICs) is described. It is verified that silicon OEICs achieve both high sensitivities and high bandwidths up to the GHz range. Silicon OEICs,therefore, compete successfully with III/V OEICs for low-cost high-volume applications.Results of advanced monolithically integrated photodiodes available in CMOS and BiCMOS technologies are presented. The technological aspects for the monolithic integration of photodiodes are addressed and the properties of the so-called double photodiode and of the pin photodiode are described. The innovative integrated double photodiode allowing data rates of 622 Mb/s is available in standard silicon technologies without any process modification. For the integration of the pin photodiode allowing data rates of higher than 1 Gb/s usually at least one additional mask is required. It will be shown that the pin photodiode also can be implemented without an additional mask. The second main part of this article covers circuits of optical fiber and interconnect receivers with data rates of up to 1 Gb/s as well as advanced DVD pick-up OEICs with bandwidths of up to 150 MHz. The fiber receivers achieve an effective transimpedance of 45.9 k(Omega) and the sensitivity of this OEIC in a 1.0 micrometers CMOS technology with a data rate of 1 Gb/s is improved by 9 dB compared to that of a published OEIC in a 0.35 micrometers CMOS technolgy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.