A large open aperture in an optical system can capture high-resolution images but yields a shallow depth of field. To overcome this issue, we propose a method for improving microscopy imaging systems by using a variable-focus liquid lens to achieve 3D focus scanning. Specifically, the focal length of the imaging system was changed by the liquid lens, and a sequence of 12 images was captured in different focal planes. The image scale was adjusted according to the change in focal length, and the phase of the image was corrected by the phase only correction method. Then the in-focus pixels were abstracted by employing the Laplacian operator. Finally, an all-in-focus sharp image was generated, and a depth map was obtained. Additionally, to accelerate the processing speed, the Fast Fourier Transform image processing during phase correction was optimized. Meanwhile, we propose a parallel optimization solution for the original processing flow.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.