The reasoning over massive RDF data has a great advancement in last few years. Many methods have been proposed in past several years, including the method with MapReduce. But the current MapReduce approach contains four reasoning steps and avoids data duplication by special data processing and partitioning. Our work is to propose an algorithm for RDFS reasoning with MapReduce and Bigtable. Through the optimization of RDFS rules’ applying sequence in map and reduce methods, our approach can complete RDFS closure reasoning without special data preprocessing and partitioning in only one MapReduce reasoning step. We have implemented our method on Hadoop and HBase with 3 nodes. We compute the RDFS closure over different datasets and our practice enjoys faster speed and better speedup, calculating RDFS closure of 260 million triples in 50 minutes, about 15 minutes faster than WebPIE.
A new approach to sensor modeling based on neural network is presented. As an example, consider the operation of a radio frequency (RF) monitor. An inverse model of the RF receiver is obtained by using BPNN and improved learning algorithm. The present paper proposed another approach to sensor modeling based on a simple functional link neural network (FLNN). In sensor modeling, using a FLNN trained by an iterated algorithm, a set of coefficients are obtained accurately. In this paper an example is given to illustrate the method. It is simple to design and compact.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.