One-dimensional artificial muscles like natural muscles have been studied for robots and artificial limbs to exoskeletons. Particularly, an artificial muscle using carbon nanotube (CNT) is very light and has excellent mechanical performance, and therefore CNT is researched as a promising material for artificial muscle.
Here, we demonstrated large tensile stroke of CNT based artificial muscle with graphene inside. Using biscrolling method shown in previous CNT hybrid yarn supercapacitors, electrochemical capacitance of artificial muscles could be increased by implanting graphene into CNT yarns. These graphene biscrolled CNT artificial muscles have slightly lower mechanical properties than bare CNT yarn artificial muscles, however it shows superior tensile stroke because of its large capacitance.
In addition to graphene, these artificial muscles have shown the possibility that other materials or strategies in reported supercapacitor studies can also be applied to improve the performance of electrochemical artificial muscles. Larger actuation of graphene biscrolled CNT artificial muscles could be applied to such areas as prosthetics devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.