Graphene-based porous materials have attracted broad attentions in supercapacitor (SC) applications, due to the high conductivity and large surface area. The most widely used approach to fabricate graphene-based porous electrode materials is the reduction of graphene oxide (GO). The reduction process significantly affects the properties of reduced graphene oxide (RGO), including the conductivity, surface chemistry and the porosity. Therefore, the control the reduction process is of great importance to produce high performance electrode materials. In this paper, we explore the control of the electrical conductivity and surface chemistry of flash reduced GO material, which depends on the reduction degree. The reduction degree is tuned by varying the energy of a camera flash used to reduce the GO. The reduction degree is characterized by X-ray photoelectron spectroscopy (XPS). We find the high reduction degree (low oxygen content) is beneficial to achieve high electrical conductivity, however, the overall specific capacitance becomes lower. As a result, we can see that electrode surface chemistry is more dominant than its electrical conductivity in enhancing SC specific capacitance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.