Most of dehazing algorithms are based on the well known Koschmieder image restoration model working on color images. Nowadays, many autonomous underwater vehicles use marker detection in order to estimate their 3D pose according to the marked target. In this paper, we propose an adaptation of the Koschmieder for grayscale images which is more suitable for marker detection. This is done by enhancing the final energy (the radiance) of the image lost during the processing. We show that by multiplying the final radiance image by the shifted transmission of the Koschmieder model, we can enhance the gradient and the contrast of the image. We have implemented our Koschmieder adaptation into two methods from the literature and proven its robustness on an underwater dataset containing ArUco markers. The obtained results outperform the existing methods in terms of marker detection rate without degrading the pose estimation.
This paper presents a new approach to improve the identification of underwater fiducial markers for camera pose estimation. The use of marker detection is new in the underwater field. Hence, it requires a new image preprocessing to reach the same performance as in onshore environment. This is a challenging task due to the poor quality of underwater images. Images captured in highly turbid environment are strongly degraded by light attenuation and scattering. In this context, dehazing methods are increasingly used. However, they are less effective because the scattering of light in the water is different from the atmosphere. Therefore, the estimation of dehazing parameters on the target image can lead to a bad image restoration. For this reason, an objectoriented dehazing method is proposed to optimize the contrast of markers. The proposed system exploits the texture features derived by multi-channel filtering for image segmentation. To achieve this, saliency detection is applied to estimate the visually salient objects in the image. The generated saliency map is passed through a Gabor filters bank and the significant texture features are clustered by K-means algorithm to produce the segmented image. Once different objects of the image are separated, an optimized Dark Channel Prior (DCP) dehazing method is applied to optimize the contrast of each individual object. The implemented system has been tested on a large image dataset taken during night offshore experiments in turbid waters at 15 meters depth. Results showed that the object-oriented dehazing improves the successful of markers identification in underwater environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.