The semiconductor industry continually evaluates new materials to improve the process or minimize product variability, which could create measurement challenges for metrology tools in the visible and near-infrared (NIR) spectrum. Opaque materials (i.e., ‘hard masks,’ ‘HM’) are placed in between the resist (i.e., inner layer) and process (i.e., outer layer or underlying layer) in 3D NAND or DRAM processes to control the etch of high aspect-ratio structures to maximize product yield. However, longer wavelengths (e.g., IR WL) may be required to penetrate and properly view the underlying process layer and measure OVL accurately. In this work, longer wavelengths will be evaluated to improve measurement accuracy and keep up with the increasing use of opaque materials, which is expected to increase in future nodes. We will review the benefits of IR WL to OVL measurement accuracy by quantifying the OVL residuals, contrast precision (CP), and total measurement uncertainty (TMU) on multiple DRAM and 3D NAND critical layers.
The current state of the art ADI overlay metrology relies on multi-wavelength uDBO techniques. Combining the wavelengths results in better robustness against process effects like process induced grating asymmetries. Overlay information is extracted in the image plane by determining the intensity asymmetry in the 1st order diffraction signals of two grating pairs with an intentional shift (bias). In this paper we discuss a next evolution in DBO targets where a target is created with multiple biases. These so called cDBO (continuous bias DBO) targets have a slightly different pitch between top and bottom grating, which has the effect of having a different bias values along the grating length and are complimentary to the uDBO technology. Where for the uDBO target, the diffraction results in a uniform Intensity pattern that carries the Overlay signal, for cDBO, an oscillating intensity pattern occurs, and the Overlay information is now captured in the phase of that pattern. Phase-based Overlay has an improved, intrinsic robustness over intensity-based overlay and can reduce the need for multi-wavelength techniques in several cases. Results on memory technology wafers confirm that the swing-curve (through-wavelength) behavior is indeed more stable for phase-based DBO target and that for accurate Overlay, this target can be qualified with a single wavelength recipe (compared to the uDBO dual wavelength recipe). In this paper, both initial results on a Micron feasibility wafer will be shown as well as demonstrated capability in a production environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.