In E-beam lithography, the double or multiple Gaussian kernels used to describe the electron scattering behavior
have been discussed extensively for critical dimensions (CDs) larger than the e-beam blur size. However in e-beam
direct write on wafer, CD dimensions are close to the beam blur size because of requirements in both resolution and
throughput. This situation gives rise to a severe iso-dense CD bias. Hence the accuracy of the modeling kernel is
required to achieve a larger common process window.
In this paper we present contour-based kernel modeling and verification for e-beam lithography. The edge contours
of CD-SEM images of the contact hole array pattern with duty ratio splits are used in this Gaussian kernel modeling
study. A 2-step optimization sequence is proposed to improve the fitting efficiency and robustness. In the first step,
roundness is the primary and the most effective index at the corner region which is sensitive to determine the beam blur
size. The next step is to minimize the deviation of the through-pitch proximity effect by adjusting the ratio of the electron
backscattering to the electron forward scattering. The more accurate cost index, edge placement error, is applied in the
subsequent optimization step with constrained beam blur sizes extracted from the previous step. The optimum modeling
kernel parameters can be obtained by the lowest cost deviation of the simulation contours and the CD-SEM extracted
edge contours after optimization iterations. For early study of the proximity impact on future EBDW systems, the
exposure experiment is performed on an EBM-8000 mask writer to build the modeling kernel. The prediction accuracy
of the optimum modeling kernel on 60-nm features with different pattern densities is also verified experimentally to be
within 1.5 nm.
Reflective electron-beam lithography (REBL) employs a novel device to impress pattern information on an electron
beam. This device, the digital pattern generator (DPG), is an array of small electron reflectors, in which the reflectance
of each mirror is controlled by underlying CMOS circuitry. When illuminated by a beam of low-energy electrons, the
DPG is effectively a programmable electron-luminous image source. By switching the mirror drive circuits
appropriately, the DPG can ‘scroll’ the image of an integrated circuit pattern across its surface; and the moving electron
image, suitably demagnified, can be used to expose the resist-coated surface of a wafer or mask. This concept was first
realized in a device suitable for 45 nm lithography demonstrations. A next-generation device has been designed and is
presently nearing completion. The new version includes several advances intended to make it more suitable for
application in commercial lithography systems. We will discuss the innovations and compromises in the design of this
next-generation device. For application in commercially-practical maskless lithography at upcoming device nodes, still
more advances will be needed. Some of the directions in which this technology can be extended will be described.
KLA-Tencor is currently developing Reflective Electron Beam Lithography (REBL), targeted as a production worthy multiple electron beam tool for next generation high volume lithography. The Digital Pattern Generator (DPG) integrated with CMOS and MEMS lenslets is a critical part of REBL. Previously, KLA-Tencor reported on progress towards a REBL tool for maskless lithography below the 10 nm technology node. However, the MEMS lenslet structure suffered from charging up during writing, requiring the usage of a charge drain coating. Since then, the TSMC multiple e-beam team and the KLA-Tencor REBL team have worked together to further develop the DPG for direct write lithography. In this paper, we introduce a hollow-structure MEMS lenslet array that inherently prevents charging during writing, and preliminary verification results are also presented.
Multiple e-beam direct write lithography (MEBDW), using >10,000 e-beams writing in parallel, proposed by
MAPPER, KLA-Tencor, and IMS is a potential solution for 20-nm half-pitch and beyond. The raster scan in MEBDW
makes bitmap its data format. Data handling becomes indispensable since bitmap needs a huge data volume due to the
fine pixel size to keep the CD accuracy after e-beam proximity correction (EPC). In fact, in 10,000-beam MEBDW, for a
10 WPH tool of 1-nm pixel size and 1-bit gray level, the aggregated data transmission rate would be up to 1963 Tera bits
per second (bps), requiring 19,630 fibers transmitting 10 Gbps in each fiber. The data rate per beam would be <20 Gbps.
Hence data reduction using bigger pixel size, fewer grey levels to achieve sub-nm EPC accuracy, and data truncation
have been extensively studied.
In this paper, process window assessment through Exposure-Defocus (E-D) Forest to quantitatively characterize the
data truncation before and after EPC is reported. REBL electron optics, electron scattering in resist, and resist acid
diffusion are considered, to construct the E-D Forest and to analyze the imaging performance of the most representative layers and patterns, such as critical line/space and hole layers with minimum pitch, cutting layers, and implant layers, for the 10-nm, and 7-nm nodes.
KEYWORDS: Raster graphics, Critical dimension metrology, Semiconducting wafers, Data transmission, Electron beam lithography, Tolerancing, Optical fibers, Maskless lithography, Electron beam direct write lithography, Mask making
Massively E-beam maskless lithography (MEBML2) is one of the potential solutions for 32-nm half-pitch and
beyond. In the past, its relatively low throughput restricted EBDW development to mostly mask making, small volume
wafer production and prototyping. Recently the production worthy ML2 approaches, >10,000 e-beams writing in
parallel, have been proposed by MAPPER, KLA and IMS. These approaches use raster scan in pattern writing. Hence
the bitmap is certainly the final data format.
The bitmap format used to have huge data volume with fine pixel size to maintain the CD accuracy after electron
proximity correction (EPC). Data handling becomes necessary, especially on data transmission rate. The aggregated data
transmission rate would be up to 1963 Tera bits per second (bps) for a 10 WPH tool using 1-nm pixel size and 1-bit gray
level. It needs 19,630 fibers each transmitting 10 Gbps. The data rate per beam would be >20 Gbps in 10,000-beam
MEBML2. Hence data reduction using bigger pixel size to achieve sub-nm EPC accuracy is crucial for reducing the fiber
number to the beam number.
In this paper, the writing-error-enhanced-factor to quantitatively characterize the impact of CD accuracy by various
total blur in resist is reported; and we propose the vernier pattern to verify sub-nm CD accuracy and the in-house
dithering raster method to achieve sub-0.2-nm CD accuracy using multiple-nm pixel sizes, which could reduce the need
of the aggregated data rate to 11%, 33%, 44% and 79% of 1963 Tbps on 22-nm, 16-nm, 11-nm, 8-nm node respectively.
We propose a useful methodology, called phase-defocus (P-D) window, to express the mutual dependence of Alt-PSM mask structure and the wafer process window of the pattern-position shift caused by phase error and intensity imbalance. The P-D window was predicted and optimized with a 2-D mask with effective phase and transmission by simulations. We further used rigorous E-M field simulations to correlate the 3-D mask structure to those optimized conditions. Moreover, experiments were performed with four kinds of mask structures and the best Alt-PSM structure was obtained and used to suggest the mask fabrication performance based on P-D window analysis. In order to understand the influence of mask fabrication on patterns with various densities, the common P-D window is proposed. Using the P-D window, the optimized condition was achieved with a maximum process margin for the mask and wafer. In addition, the P-D window is used to quantify the scattering effect coming from the topographical mask and determine the effective 180° for the iso-focal condition.
This paper presented an integrated simulation framework linking our in-house mask writer simulator and the optical lithography simulation engines to include the mask corner rounding effect in lithographic performance evaluations. In the writer simulator, a modified two-dimensional Gaussian function is used as the functional form of the convolution kernel (point spread function). Parameters of the kernel function for different writing machines are automatically extracted from scanning electron microscope (SEM) photographs of simple mask pattern geometries. The convolution results of the kernel and the mask layout form the intensity distribution for pattern definition. The isocontour of the resulting image at the desired level of bias can be regarded as a good approximation of the mask shape obtained from a real mask writer. The writer simulator then saves the contour data as the user-specified format of mask file for subsequent lithography simulations. With the aid of this simulation tool, the impacts of mask corner rounding effects on two-dimensional OPCed pattern for 90-nm and 65-nm node lithography processes are quantitatively evaluated. The results show the line end shortening (LES) is greatly influenced by mask corner rounding effects. The LESs in the 65-nm node process are over twice of those in the 90-nm node process. The resolution capability of a 2-stage 16X mask manufacturing process was also studied in this paper. Simulation results indicate the ArF lithography might be required to make this innovative mask-making technology suitable for 90-nm generation and beyond.
The concept of system invariance is the principle of scaling law in optical lithography. Both the conservation of the intensity threshold of the aerial image and the invariant pupil filling of the diffracted light with the normalized numerical aperture (NA) have to be satisfactory in order to ensure the invariance for a system in a variety of optical settings. Two well-known scaling equations with k1 and k2 factors characterize the capability of the manufacturing process in microlithography. In theory, the validity of these two equations has to be based on the principle of invariance. Therefore, any optical parameters in exposure tool could be scaling validly and properly, once they obey the principle of invariance.
Three important concepts about the mask error enhancement factor (MEEF) are proposed. From the definition of MEEF, it could be derived as a function of the image log slope and the aerial image variation caused by mask critical dimension (CD) errors. Second, a mask error common window indicator (MECWIN) is proposed to evaluate the MEEF and mask CD specification by knowing the wafer CD tolerance. This concept is used to define the mask CD specification without any ambiguity. Finally, we describe the complex 2-D response to the mask-making error around the line end by a mask error enhancement tensor. Both theoretical derivations and experiments to justify the theory are presented.
In the IC industry the mask cost and cycle time have increased dramatically since the chip design has become more complex and the required mask specification, tighter. The lithography technology has been driven to 65-nm node and 90-nm product will be manufacturing in 2004, according to ITRS's roadmap. However, the optical exposure tools do not extend to a shorter wavelength as the critical dimension (CD) shrinks. In such sub-wavelength technology generation,
the mask error factor (MEF) is normally higher. Higher MEF means that tighter mask specification is required to sustain the lithography performance. The tighter mask specification will impact both mask processing complexity and cost. The mask is no longer a low-cost process. In addition, the number of wafers printed from each mask set is trending down, resulting in a huge investment to
tape out a new circuit. Higher cost discourages circuit shrinking, thus, prohibits commercialization of new technology nodes.
A comprehensive study of alternating phase shifting mask (Alt-PSM) including mask making, 3-dimensional aerial image simulation, and wafer printing is reported in this paper. For the mask making, we found that the micro-loading effect will be greatly improved using the etching recipe with high Reactive Ion Etching (RIE) power and low Inductively Coupled Plasma (ICP) power. However, this recipe has side effects of Cr film damage and rough quartz side wall. Due to the 3-dimensional mask complex effect, the optimal phase difference is not simply π calculated using optical path difference but is varied with mask features. The optimal phase difference is 165° other than 180° for hole patterns, while it is 176° for line-and-space patterns. The micro-loading effect with variant 2-dimensional complexities is also studied in this paper.
Resolving the very small feature size of contact holes for 65-nm technology node has placed enormous challenge on even the up-to-date optical lithography techniques. Resolution enhancement technique (RET) will be helpful and necessary to alleviate the strain posed by such a task. Here we report that a 193-nm alternating phase shift mask (Alt-PSM) with phase-shifted assist features is used to print the contact holes for 65-nm node. With a novel algorithm of phase assignment, the phases of the main features are assigned properly in the full chip with the assistant features added. The results show that DOF of 110-nm iso-contact hole can be enhanced up to 0.5 μm.
The request of pattern recognition has been frequently brought up by both mask and wafer engineers. Despite different intentions, pattern recognition is usually the first step of many applications and hence plays a major role to accomplish certain tasks. For the purpose of this work, pattern recognition is defined as searching a specific polygon or a group of particular patterns from a chip layout. Operator scan is truly not an efficient approach of pattern recognition, in particular, for cases with huge design database of advanced semiconductor integrated circuits. Obviously, an automation system of pattern recognition is necessary and benefits the data preparation process. Two categories of pattern recognition are discussed in the present study, 'fuzzy search' and 'exact match.' Each category has its own application, but the searching algorithms could be much different. Details of searching algorithms are given for both categories of pattern recognition. Due to the nature of industrial standard, the scope of the present application is limited to database with GDSII format. Hence, coordinate searching is internally used inside the searching engine.
Controlling errors of critical dimension (CD) uniformity is crucial to achieving optimal IC performance, high chip yield and long lasting reliability. When the CDs to be resolved are less than the wavelength equipped by a lithographic exposure tool, the chip level CD variations caused by optical proximity effect (OPE) have been found significantly. With the relentlessly reduced CDs in integrated circuits the impact of OPE to chip yield and performance is much more profound and necessitates an inverse correction. In this paper, we report a model-based full-chip OPC on the contact hole layer of 0.13-micrometers logic circuits using 248-nm photo processing and attenuated phase-shifting mask (Att PSM). The final result demonstrates that OPE of random logic contact hole level can be greatly surpassed and controlled even with mask errors and their enhancement factors included of which are typically quite significant with layers of contact holes.
Three important concepts about the mask error enhancement factor (MEEF) are proposed in this paper. From the fundamental assumption, the MEEF is derived to be a function of the image log slope and the aerial image variation caused by mask making error. Secondly, a mask error common window indicator (MECWIN) is proposed to evaluate the MEEF and mask CD specification by knowing the wafer CD tolerance. This concept is used to define the mask CD specification without any ambiguity. Finally, we describe the complex two-dimensional response to the mask making error around the line-end by a mask error enhancement tensor. Both theoretical derivations and experiments to justify the theory are presented in this paper.
In applications of high intensity lasers to materials processing, the formation of an ablation plume is of high importance. For wide bandgap insulators (e.g., oxides, halides, nitrides, carbides) irradiated with sub bandgap photon energies, the route to plume formation is not well understood. For example, contrary to metals and semiconductors, inverse bremsstrahlung (IB) is not possible for a wide range of laser intensities on these materials due to insufficient photon and electron densities. We present an alternative path to plume formation on nominally transparent materials. In this paper, we first review the interaction of photo- and thermally-emitted particles from exposure to pulsed laser irradiation of surfaces which include photoelectrons, energetic positive ions, and neutral metal atoms. We establish experimentally that there is overlap in space and time of significant portions of the distributions of these particles in the near surface region. We then present a model for the collected motion of these particles and show that as laser fluence is increased we achieve sufficient densities, overlap, and kinetic energies to result in the onset of plume fluorescence and eventually ionization at fluences far below any IB or catastrophic breakdown process.
In model wide bandgap materials such as single crystal alkali halides and MgO (nominally transparent), the absorption of laser radiation at 248 nm (5 eV photons) at modest fluences is defect dominated. We describe a technique for imaging the initial defect densities by their luminescence at low laser fluences and show a typical photoluminescence image of cleaved MgO. High defect densities are observed along many cleavage steps, consistent with previous observations of strong point-to-point variations in the ablative response of cleaved MgO surfaces. At fluences below those required for sustained emission, the composition of neutral emissions from the surface can also be strongly influenced by impurity defects, as shown by the intense emission of carbon oxides and the correspondingly weak emissions of atomic and molecular oxygen from arc-fused MgO. We also present evidence for defect-mediated ion emission at these low fluences.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.