The fluorescence imaging spectrometer (FLORIS) is the payload of the fluorescence explorer mission (FLEX) of the European Space Agency. The mission objective is to perform quantitative measurements of the solar-induced vegetation fluorescence aiming at monitoring photosynthetic activity. FLORIS works in a push-broom configuration, and it is designed to acquire data in the 500 to 780 nm spectral range with a sampling of 0.1 nm in the oxygen bands (759 to 769 nm and 686 to 697 nm) and 0.5 to 2.0 nm in the red edge, chlorophyll absorption, and photochemical reflectance index bands. FLEX will fly in formation with Sentinel-3 to benefit from the measurements made by Sentinel-3 instruments, OLCI, and SLSTR, particularly concerning the cloud screening, the proper characterization of the atmospheric state, and the determination of the surface temperature. The instrument concept is based on a common telescope and two modified Offner spectrometers with reflective concave gratings both for the high resolution (HR) and low resolution (LR) spectrometers. In the frame of the instrument predevelopment, Leonardo Company (Italy) has built and tested an elegant breadboard of the instrument consisting of the telescope and the HR spectrometer. OHB System AG (Germany) is in charge of the development of the LR spectrometer. The main objectives of the activity are to anticipate the development of the instrument and provide early risk retirement of the critical components; evaluate the system performances such as imaging quality parameters, straylight, ghost, polarization sensitivity, and environmental influences; verify the adequacy of critical tests such as spectral characterization and straylight; and define and optimize instrument alignment procedures. Following a brief overview of the FLEX mission, we will cover the design and the development of the optics breadboard with emphasis on the results obtained during the tests and the lessons learned for the flight unit.
Here we present the software StrayLux, a tool to calculate the diffuse stray-light component of optical instruments. This software uses a semi-analytical approach to approximate stray-light contribution of the optical components of an instrument, resulting in shorter calculation times than Monte-Carlo simulations. The tool is completely written in Python, is provided with a graphical interface, and can interact with Zemax to extract the relevant parameters of an optical design.
The latest version of the software is currently made available to ESA industrial partners as a possible benchmark tool for stray-light estimation, within the instrument pre-development activities for future missions.
After an initial post-MSG mission study (2003-2004) where preliminary instrument concepts were investigated allowing in the same time to consolidate the technical requirements for the overall system study, a MTG pre-phase A study has been performed for the overall system concept, architecture and programmatic aspects during 2004-2005 time frame.
This paper provides an overview of the outcome of the MTG sensor concept studies conducted in the frame of the pre-phase A. It namely focuses onto the Imaging and Sounding Missions, highlights the resulting instrument concepts, establishes the critical technologies and introduces the study steps towards the implementation of the MTG development programme.
To meet those needs, trade-off’s were performed during the Meteosat Third Generation (MTG) mission study (2003-2005) where preliminary instrument concepts for the Infra-Red Sounding (IRS) mission were investigated allowing at the same time to consolidate the technical requirements for the overall system study. The trade-off’s demonstrated that two types of instrument could fulfill the requirements: a Fourier Transform Spectrometer and a Dispersive Spectrometer.
This paper aims at comparing these two MTG-IRS sensor concepts by highlighting the differences in the constraints imposed on the characteristics and required performance at hardware level. In addition, technology criticalities and some other aspects are discussed qualitatively.
This paper summarizes design rules and performance aspects identified by ESA during phases A/B1 of the Sentinel-4 and Sentinel-5 missions. The following aspects have been investigated and will be discussed: minimization of polarization dependent spectral oscillations, use of a polarization scrambler in converging beam or parallel beam at large angles of incidence, polarization dependent pointing error.
Although most requirements for the CarbonSat phase A are defined over spatially homogeneous scenes, it is known from previous missions and studies that the observation of real, spatially heterogeneous scenes create specific measurement errors. One obvious mechanism is a distortion of the instrument spectral response function (ISRF) induced by a non-uniform slit illumination in the along-track (ALT) direction. This error has been analysed for several missions (OMI, Sentinel-4, Sentinel-5). The combination of spectrometer smile with across-track (ACT) scene non-uniformities induces similar errors. In this paper, we report about the analysis efforts carried out during CarbonSat preliminary phases to evaluate and mitigate these effects. In a first section, we introduce common concepts and notations for heterogeneous scenes analysis. An exhaustive list of known error mechanisms is presented. In section 2 we discuss the effect of inhomogeneous slit illumination, and describe hardware mitigation with a slit homogeniser. The combination of spectrometer smile and ACT heterogeneities is studied in section 3.
Keywords: MERIS, ENVISAT, Imaging Spectrometer, Ocean colour
View contact details