Integrated optical phased arrays (OPAs), fabricated in advanced silicon-photonics platforms, enable manipulation and dynamic control of free-space light in a compact form factor, at low costs, and in a non-mechanical way. This talk will highlight our work on developing OPA-based platforms, devices, and systems that enable chip-based solutions to high-impact problems in areas including augmented-reality displays, LiDAR sensing for autonomous vehicles, optical trapping for biophotonics, 3D printing, and trapped-ion quantum engineering.
Integrated optical phased arrays (OPAs), fabricated in advanced silicon-photonics platforms, enable manipulation and dynamic control of free-space light in a compact form factor, at low costs, and in a non-mechanical way. This talk will highlight our work on developing OPA-based platforms, devices, and systems that enable chip-based solutions to high-impact problems in areas including augmented-reality displays, LiDAR sensing for autonomous vehicles, optical trapping for biophotonics, 3D printing, and trapped-ion quantum engineering.
Integrated optical phased arrays (OPAs), fabricated in advanced silicon-photonics platforms, enable manipulation and dynamic control of free-space light in a compact form factor, at low costs, and in a non-mechanical way. In this talk, I will highlight our work on developing OPA-based platforms, devices, and systems that enable chip-based solutions to high-impact problems in areas including augmented-reality displays, LiDAR sensing for autonomous vehicles, optical trapping for biophotonics, 3D printing, and trapped-ion quantum engineering.
Integrated optical phased arrays (OPAs), fabricated in advanced silicon-photonics platforms, enable manipulation and dynamic control of free-space light in a compact form factor, at low costs, and in a non-mechanical way. In this talk, I will highlight our work on developing OPA-based platforms, devices, and systems that enable chip-based solutions to high-impact problems in areas including augmented-reality displays, LiDAR sensing for autonomous vehicles, optical trapping for biophotonics, 3D printing, and trapped-ion quantum engineering.
PIC device concepts are difficult to grasp, and explanations typically require the solution of Maxwell’s equations. Laboratory experiments which demonstrate the testing of these devices can offer some intuition into device functionality. However, photonics device test on an unpackaged die requires a complicated equipment set-up because devices, both passive (all optical) and active (opto-electronic), need precise (~nm) optical alignment. Online asynchronous courses, Integrated Photonics Test: Passive Devices (IPT:Passive) and Integrated Photonics Test: Active Devices (IPT:Active), that teach hands-on laboratory testing of volume-manufactured photonic integrated circuit (PIC) devices are created as a multi-instructor collaborative approach with lectures and laboratory videos and exercises.
Recent integrated optical phased array architectures, results, and applications will be reviewed. Beam-steering optical phased arrays monolithically integrated with on-chip rare-earth-doped lasers and heterogeneously integrated with CMOS driving electronics will be shown. Passive integrated optical phased arrays that focus radiated light to tightly-confined spots in the near field and that generate quasi-Bessel beams will be discussed. Finally, integrated-phased-array-based visible-light holographic displays will be proposed as a scalable solution towards the next generation of augmented-reality head-mounted displays; passive near-eye holographic displays, visible-light liquid-crystal modulators, and liquid-crystal-based visible-light phased arrays will be presented.
Mode-locked lasers provide extremely low jitter optical pulse trains for a number of applications ranging from sampling of RF-signals and optical frequency combs to microwave and optical signal synthesis. Integrated versions have the advantage of high reliability, low cost and compact. Here, we describe a fully integrated mode-locked laser architecture on a CMOS platform that utilizes rare-earth doped gain media, double-chirped waveguide gratings for dispersion compensation and nonlinear Michelson Interferometers for generating an artificial saturable absorber to implement additive pulse mode locking on chip. First results of devices at 1.9 μm using thulium doped aluminum-oxide glass and operating in the Q-switched mode locking regime are presented.
We review recent progress of an effort led by the Stojanović (UC Berkeley), Ram (MIT) and Popović (CU Boulder) research groups to enable the design of photonic devices, and complete on-chip electro-optic systems and interfaces, directly in standard microelectronics CMOS processes in a microprocessor foundry, with no in-foundry process modifications. This approach allows tight and large-scale monolithic integration of silicon photonics with state-of-the-art (sub-100nm-node) microelectronics, here a 45nm SOI CMOS process. It enables natural scale-up to manufacturing, and rapid advances in device design due to process repeatability. The initial driver application was addressing the processor-to-memory communication energy bottleneck. Device results include 5Gbps modulators based on an interleaved junction that take advantage of the high resolution of the sub-100nm CMOS process. We demonstrate operation at 5fJ/bit with 1.5dB insertion loss and 8dB extinction ratio. We also demonstrate the first infrared detectors in a zero-change CMOS process, using absorption in transistor source/drain SiGe stressors. Subsystems described include the first monolithically integrated electronic-photonic transmitter on chip (modulator+driver) with 20-70fJ/bit wall plug energy/bit (2-3.5Gbps), to our knowledge the lowest transmitter energy demonstrated to date. We also demonstrate native-process infrared receivers at 220fJ/bit (5Gbps). These are encouraging signs for the prospects of monolithic electronics-photonics integration. Beyond processor-to-memory interconnects, our approach to photonics as a “More-than- Moore” technology inside advanced CMOS promises to enable VLSI electronic-photonic chip platforms tailored to a vast array of emerging applications, from optical and acoustic sensing, high-speed signal processing, RF and optical metrology and clocks, through to analog computation and quantum technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.