The 3D surface reconstruction is done by analyzing the deformation of the image of binary grating projected onto the relief of an object, after that, the phase of the deformed pattern is extracted by Fourier transform and unwrapping the phase. There are several techniques for image grating projection and one of them is the so called Talbot Effect that creates self-images of a binary gratings. In this work one of the self-image of a grating is used for projection on the relief of an object. The deformed image is captured by a camera and is analyzed by the proposed Extended Fourier Transform (XFT) algorithm. The XFT algorithm is and enhancement of the common FFT algorithm and allows an improvement in surface reconstruction. A comparison between the reconstructed surfaces using traditional FFT algorithm and the proposed XFT algorithm is presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.