KEYWORDS: Expectation maximization algorithms, Spectral coherence, Spatial coherence, Hyperspectral imaging, Signal to noise ratio, Spectral models, Amplifiers, Radio propagation, Binary data, Control systems
In hyperspectral unmixing, the objective is to decompose an electromagnetic spectral dataset measured over M spectral bands and T pixels, into N constituent material spectra (or “endmembers”) with corresponding spatial abundances. In this paper, we propose a novel approach to hyperspectral unmixing (i.e., joint estimation of endmembers and abundances) based on loopy belief propagation. In particular, we employ the bilinear generalized approximate message passing algorithm (BiG-AMP), a recently proposed belief-propagation-based approach to matrix factorization, in a “turbo” framework that enables the exploitation of spectral coherence in the endmembers, as well as spatial coherence in the abundances. In conjunction, we propose an expectation- maximization (EM) technique that can be used to automatically tune the prior statistics assumed by turbo BiG-AMP. Numerical experiments on synthetic and real-world data confirm the state-of-the-art performance of our approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.