Purpose: There are currently five FDA approved commercial digital breast tomosynthesis (DBT) systems, all of which have varying geometry and exposure techniques. The aim of this work was to determine if an anthropomorphic breast phantom could be used to systematically compare performance of DBT, full field digital mammography (FFDM) and synthetic mammography (SM) across the systems. Methods: An anthropomorphic breast phantom was created through inkjet printing containing printed masses. The phantom was imaged using automatic exposure control (AEC) settings for that system. Thus, all phantom acquisition settings, and subsequent radiation dose levels, were dictated from the manufacturer settings. A four alternative forced choice reader study was conducted to assess reader performance. Results: Performance in detecting masses was higher with DBT than with FFDM or SM. The difference in proportion correct (PC) was statistically significant for most cases. Additionally, PC of the DBT systems trended with increased gantry span with lowest PC from Hologic and Fuji (both 15°), then both GE systems (25°), and highest for Siemens (50°). Conclusions: A phantom containing masses was imaged on five commercially available DBT systems across 3 states. A 4AFC study was performed to assess performance with FFDM, DBT, and SM across all systems. Overall detection was highest using DBT, with improvement as the gantry span increased. This study is the first of its kind to use an inkjet based physical anthropomorphic phantom to assess performance of all five commercially available breast imaging systems.
Current digital mammography systems primarily employ one of two types of detectors: indirect conversion, typically using a cesium-iodine scintillator integrated with an amorphous silicon photodiode matrix, or direct conversion, using a photoconductive layer of amorphous selenium (a-Se) combined with thin-film transistor array. The goal of this study was to evaluate a methodology for objectively assessing image quality to compare human observer task performance in detecting microcalcification clusters and extended mass-like lesions achieved with different detector types. The proposed assessment methodology uses a novel anthropomorphic breast phantom fabricated with ink-jet printing. In addition to human observer detection performance, standard linear metrics such as modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were also measured to assess image quality. An Analogic Anrad AXS-2430 a-Se detector used in a commercial FFDM/DBT system and a Teledyne Dalsa Xineos-2329 with CMOS pixel readout were evaluated and compared. The DQE of each detector was similar over a range of exposures. Similar task performance in detecting microcalcifications and masses was observed between the two detectors over a range of clinically applicable dose levels, with some perplexing differences in the detection of microcalcifications at the lowest dose measurement. The evaluation approach presented seems promising as a new technique for objective assessment of breast imaging technology.
In this work we present a new methodology for creating a physical anthropomorphic breast phantom for use in dedicated breast CT (bCT) systems. We also present a method for modeling microcalcifications (MCs) in the phantom. An uncompressed digital breast was first created though analytical modeling. This virtual model is then physically realized through inkjet printing using doped ink and paper with radiographic properties similar to that of glandular and adipose tissues. In addition, MC cluster inserts were created using calcium hydroxyapatite (HA) spheres that ranged in diameter from 212-250um to 250-300um and could be inserted inside the phantom. The phantom was then assessed in terms of material realism and reproducibility using x-ray spectroscopy, a clinical full field digital mammography (FFDM) system, and a benchtop CT system. Results show that both the paper and ink used to create the physical phantom have radiographic properties which closely match reference values for glandular and adipose tissue. Further, reproducibility was confirmed through multiple prints. The phantom and MC inserts can be used to objectively assess image quality of dedicated bCT systems.
Because breast phantoms are central for evaluating 2D and 3D breast imaging systems, it is important to develop anthropomorphic, realistic phantoms that can be used in task-based assessment. The current phantoms available for use with full field digital mammography (FFDM) and digital breast tomosynthesis (DBT) are uniform or have otherwise unrealistic background texture. However, this work presents a task-based methodology for evaluating FFDM and DBT systems using two components: an anthropomorphic breast phantom created through inkjet printing and realistic pathological inserts with two types of microcalcifications (MCs). To create the phantom, a virtual breast was first modeled, then digitally compressed to a 4 cm thickness. To realize the phantom, virtual model was printed with an inkjet printer in a slice-by-slice fashion using iohexol-doped ink. The MC inserts were created using two types of materials. One set of MCs were made using calcium hydroxyapatite (HA) powder, and the other was made from sodalime coated glass (SLG) microspheres. The composite phantom plus two types of inserts was imaged on two commercially available FFDM/DBT systems: the GE Senographe Essential and the Hologic Selenia Dimensions. For the acquisitions, the automatic exposure control was used to determine a typical mammographic beam based on the phantom thickness. In addition, a similar a similar average glandular dose was used for both systems. A four alternative forced choice (4AFC) study was conducted to demonstrate the utility of the methodology and to evaluate the systems. Results of the 4AFC study showed higher detection of calcs for DBT versus FFDM on the GE system, but the reverse on the Hologic system. In this work, a breast phantom as created from inexpensive and easily accessible materials. This methodology is promising for the objective evaluation of task performance for 2D and 3D breast imaging systems.
Realistic breast phantoms serve as important tools when evaluating full field digital mammography (FFDM) and digital breast tomosynthesis (DBT) system modifications. Current breast phantoms contain either unrealistic features or uniform backgrounds. The purpose of this work was to introduce a novel, task-based methodology for evaluating FFDM and DBT systems using an anthropomorphic inkjet-printed 3D phantom with clinically relevant signals. The methodology consists of multiple physical components: an anthropomorphic breast phantom, microcalcifications made of two types of material, and masses. A 4 cm compressed thickness breast phantom was first modeled analytically, then realized in a slice-by-slice fashion using inkjet printing with iohexol-doped ink. The microcalcifications (MCs) were made by arranging individual specks of varying sizes into regular patterns. Two types of MCs were used, ranging in diameter from 150 μm to 260 μm: one made from calcium hydroxyapatite (HA) and another from soda lime glass microspheres. Lastly, realistically-shaped masses were created using ink doped with potassium iodide. The phantom was imaged on two commercially available FFDM/DBT systems, Holgic Selenia Dimensions and the GE Senographe Essential. A typical mammographic beam was used (according to the automatic exposure control for each commercial system), and a similar average glandular dose was maintained across the systems. A pilot study consisting of a four-alternative, forced-choice (4AFC) analysis with human observers was performed on the FFDM and DBT acquisitions. The linear attenuation coefficients of the microcalcification models were measured to be similar to reference values. A custom Matlab program was created to extract ROI images from images of the phantom, each containing a signal, in preparation for use with 4AFC software. A pilot 4AFC study showed the visibility of the microcalcifications ranged from easy to difficult, and results informed the final reader study. An anthropomorphic breast phantom was created using inexpensive, easily available materials. The task-based assessment was performed on clinical FFDM and DBT systems. This promising phantom generation methodology can be used to objectively evaluate task performance resulting with FFDM and DBT breast imaging systems.
The breast phantoms currently available for evaluating full field digital mammography (FFDM), digital breast tomosynthesis (DBT), and breast CT (bCT) systems often lack the complexity present in real breasts. In this work we present a new methodology for creating physical anthropomorphic breast phantoms for use in FFDM, DBT, and dedicated bCT systems using zinc acetate-doped ink. First, an uncompressed virtual phantom was created through analytical modeling. The model represented a breast with 28% fibroglandular density with 13 tissue classes and contained a 5 mm lesion. The breast was binarized to two tissue classes: adipose and fibroglandular tissue. The phantom was then realized through inkjet printing using dye ink doped with zinc acetate for the fibroglandular components and three candidate materials for the adipose background: parchment paper, organic paper, and office paper. The fabrication process was evaluated in terms of material realism and reproducibility using spectroscopy, a clinical FFDM system, and a benchtop bCT system. The linear attenuation coefficient of the doped ink plus parchment paper and parchment paper alone closely matched those of the fibroglandular and adipose tissues, respectively. A methodology for generating anthropomorphic breast phantoms was developed using a novel inkjet printing technique for use in FFDM/DBT, as well as dedicated breast CT systems. A novel uncompressed breast phantom for bCT was fabricated using inexpensive, easily available materials with realistic tissue properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.