Optical phased arrays can achieve inertialess, high-resolution, flexible beam steering required by a broad range of applications, such as laser radar, free space optical communication and interconnect, and laser projection displays. In this paper, we study the SOI and GaAs waveguide optical phased arrays (WOPAs) comparatively. The principle of the phase shifter is investigated based on the thermo-optic effect in silicon waveguides and electro-optic effect in GaAs waveguides. The propagation properties of optical field in the two kinds of WOPAs are studied numerically, including the guided modes, the propagation of optical field in single waveguide and the coupling properties of optical field in waveguide arrays. We also analyze the performance of the two kinds of WOPAs. Silicon WOPAs show superiorities of low propagation loss and wide beam scanning range, while GaAs WOPAs show superiorities of fast beam scanning speed. This research provides a valuable reference for the chip design of optical phased arrays.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.