A comparison of different transfer standard optical fiber power detectors is present. Traceable to cryogenic radiometer, these planar, focus-planar and trap detectors have different characteristics during the optical fiber power values transfer because of the different input angles or fiber connectors. For different types of fibers and fiber connectors, a new trap detector is capable for the optical fiber power measurement, which has very little sensitivity for a variety of input conditions. Comparison of fiber power measurement using a planar and a trap detector is present by employing a three-lens method. A good agreement between the two types of detectors shows the feasibility of fiber power transfer using planar detectors.
Degree of polarization (DOP) is an important physical quantity for describing the optical polarization effect and is widely applied in optical fiber communication, optical fiber gyro and the related technologies. Currently, the optical polarization degree tester for the purpose of communication uses mainly two kinds of measurement methods: Stokes vector method and extremum method. At present, there isn’t a standard to measure the accuracy and consistency of DOP parameter measurement by the devices listed above, affecting seriously the application of DOP parameter measurement in the fields of optical fiber gyro and optical fiber communication. So, it is urgent to table the accurate guarantees to trace the source of quantitative values of the DOP measuring devices and testers. In this paper, the polarization beam combination method is raised to research and manufacture the standard optical fiber light source device with the variable DOP, and an indicated error measurement has been conducted for a DOP meter. A kind of standard optical fiber light source device that uses a single light source to realize the variable DOP is put forward. It is used to provide the accurate and variable optical fiber polarization degree light with a scope of 0~100%. It is used to calibrate the DOP meters and widely applied in the field of national defense and optical communication fields. By using the standard optical power meter, DOP value by which the optical power meter calculates the optical signal can be measured, which will be used ultimately for calibration of the DOP meter. A measurement uncertainty of 0.5% is obtained using the polarization beam combination method.
In this paper, a kind of special optical fiber bonding high-temperature aging plan is raised. The armored optical fiber
technology is applied to guarantee the long-term stability of the optical properties of the standard instrument itself. The
temperature compensation encapsulation technology is adopted for optical fiber grating, that is, the wavelength will
remain constant under the standard atmosphere pressure and chamber temperature. It becomes the optical fiber grating
sensing wavelength standard instrument. The optical fiber grating standard instrument based upon this kind of new-type
structure is tested, and the result has its word that the temperature shift of this optical fiber grating standard instrument
after encapsulation is less than 0.5pm/℃. Coupled with the simple temperature control, the wavelength accuracy of the
optical fiber grating standard instrument will be controlled below ±1pm and its long-term stability will be smaller than
2pm/℃. Differ from F-P standard instrument, this optical fiber grating standard instrument is one without mechanical
device and is purely physical. So, it features more reliable performance and is applicable to mass production. The costs
of this kind of optical fiber grating standard instrument is under control and will see an important application in the
optical fiber grating sensing technology.
A new triplexing filter based on a silica direction coupler and an arrayed waveguide grating is presented. Using a combination of a direction coupler and an arrayed waveguide grating, a 1310-nm channel is multiplexed and 1490- and 1550-nm channels are demultiplexed for fiber-to-the-home. The direction coupler is used to coarsely separate the 1310-nm channel from the 1490- and 1550-nm channels. Subsequently, an arrayed waveguide grating is used to demultiplex the 1490- from 1550-nm channel. The simulated spectra show the 1-dB bandwidth of 110 nm for the 1310-nm channel and 20 and 20.5 nm for the 1490- and 1550-nm channels. The insertion loss is only 0.15 dB for 1310 nm and 5 dB for 1490 and 1550 nm. The crosstalk between the 1490- and 1550-nm channels was less than −35 dB.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.